No: EE 485
Title: Introduction to Photonics
Credits: 4
Coordinator: Lih Lin, Professor of Electrical Engineering
Goals: To acquaint students with vocabulary, major principles and phenomena of modern optics and photonic devices.
Learning Objectives:
At the end of this course, students will be able to:
Textbook:
Reference Texts:
Prerequisites by Topic:
Topics:
Course Structure: Class meets for two lectures a week, each consisting of a 100 minute session with 10 minute break in between. There is weekly homework assignment. There are two exams (one midterm and one final). If a TA is assigned to this course, there will be one final project. The final project is a team work. Each team will submit a project report.
Computer Resources: None required, although Mathcad, Matlab or Mathematica may be useful for some of the homework assignments.
Laboratory Resources: Not required.
Grading: Homework (40%), Midterm exam (30%), Final exam (30%). If a final project is included, then Homework (30%), Midterm exam (25%), Final exam (25%), Final project report (20%).
Outcome Coverage:
(a) An ability to apply knowledge of mathematics, science and engineering. The course applies knowledge of mathematics to description and analysis of optical phenomena. Electromagnetic theory and optics formalisms are used throughout the course. Relevance: High.
(b) An ability to design and conduct experiments, as well as analyze and interpret data. The final project, if included, requires conducting experiments. General guidance will be given, but specific procedures will be designed by each team as they attempt to answer specific questions. Experimental design and the conduct of experiments will be tested through final project reports (20% of the final grade). There are also some in-class experiments for this course. Relevance: Low.
(c) An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability. Analysis and design of photonic components and systems are introduced throughout the course. Together with associated homework and examination problems, they challenge the students to understand design rules for advanced optical components and systems to be applied in real world. Relevance: Low.
(d) An ability to function on multi-disciplinary teams. To perform well in this class requires understanding of basic knowledge in Electrical Engineering, Physics, and Mathematics. The class has been attended by students from EE, Physics, Mechanical Engineering, Chemistry, Material Science and Engineering, Applied Math. Relevance: Medium.
(e) An ability to identify, formulate and solve engineering problems. The course projects involve identifying engineering problems associated with design and analysis of optical systems. Students are assigned homework and challenged to formulate their individual solutions. Relevance: High.
(h) The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context. Photonics has made its impact in optical fiber communications, and has become a required knowledge for various interdisciplinary fields such as nanoscience, nanotechnology, and biophotonics. Through this course, students will be able to learn the impact of photonics on various innovation and problems related to these fields. Relevance: Low.
(k) An ability to use the techniques, skills and modern engineering tools necessary for engineering practice. To solve problems in photonics requires the ability to use several basic tools, skills, and tools in engineering. Relevance: Medium.
Preparers: Lih Y. Lin
Last Revised: October 4, 2012