

DEFINE: DEEP FACTORIZED INPUT TOKEN EMBEDDINGS FOR NEURAL SEQUENCE MODELING

SACHIN MEHTA

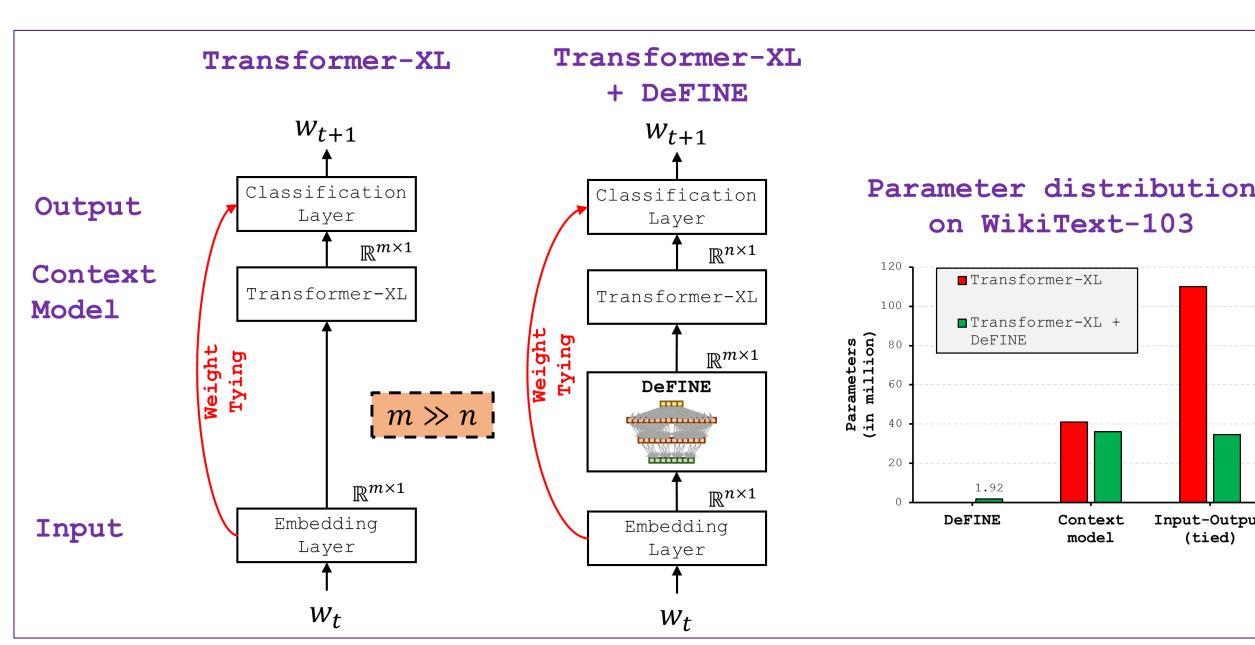
ADVISORS: Prof. Linda Shapiro and Prof. Hannaneh Hajishirzi

Introduction

- Learning input embeddings
- Large token-level vocabularies (e.g., WikiText-103's vocab size is 267K)
- Most of the parameters in the input and the output layers
- Uses shallow look-up table with medium dimensional embedding e = f(w)
- Our approach (MER principle):
 - *Map* to low-dimensional look-up table (64- or 128-dimensional)
 - *Expand* to a very high-dimensional space (say **4096**-dimensional)

 $e = h\big(g(w)\big)$

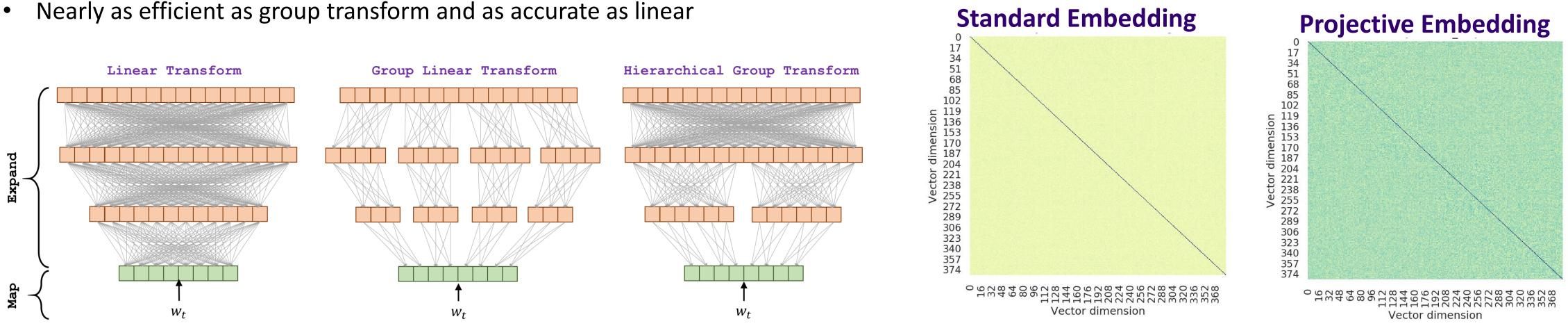
- Efficient Hierarchical Group Transform •••
- New skip-connection that establishes direct link with the Map layer
- *Reduce* (or project) linearly to low dimensional space



With DeFINE, Transformer-XL learns input and output representations in lowdimensional space with minimal impact on performance.

Hierarchical Group Transformation (HGT)

- Sparse and dense connections
- Multiple paths to the Map layer
- Nearly as efficient as group transform and as accurate as linear



ELECTRICAL & COMPUTER ENGINEERING

UNIVERSITY of WASHINGTON

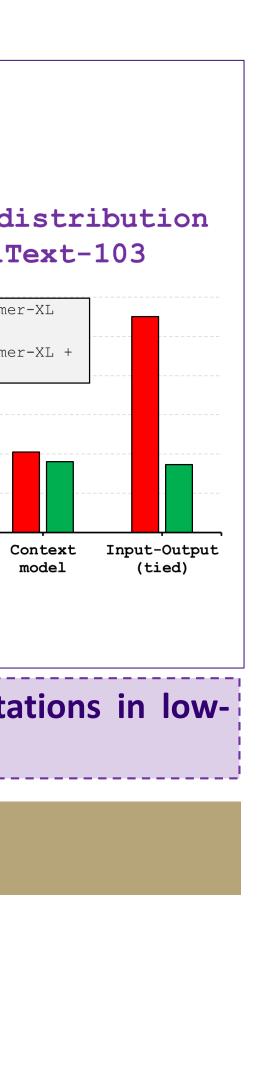
DeFINE: Learning Deep Token Representations Efficiently

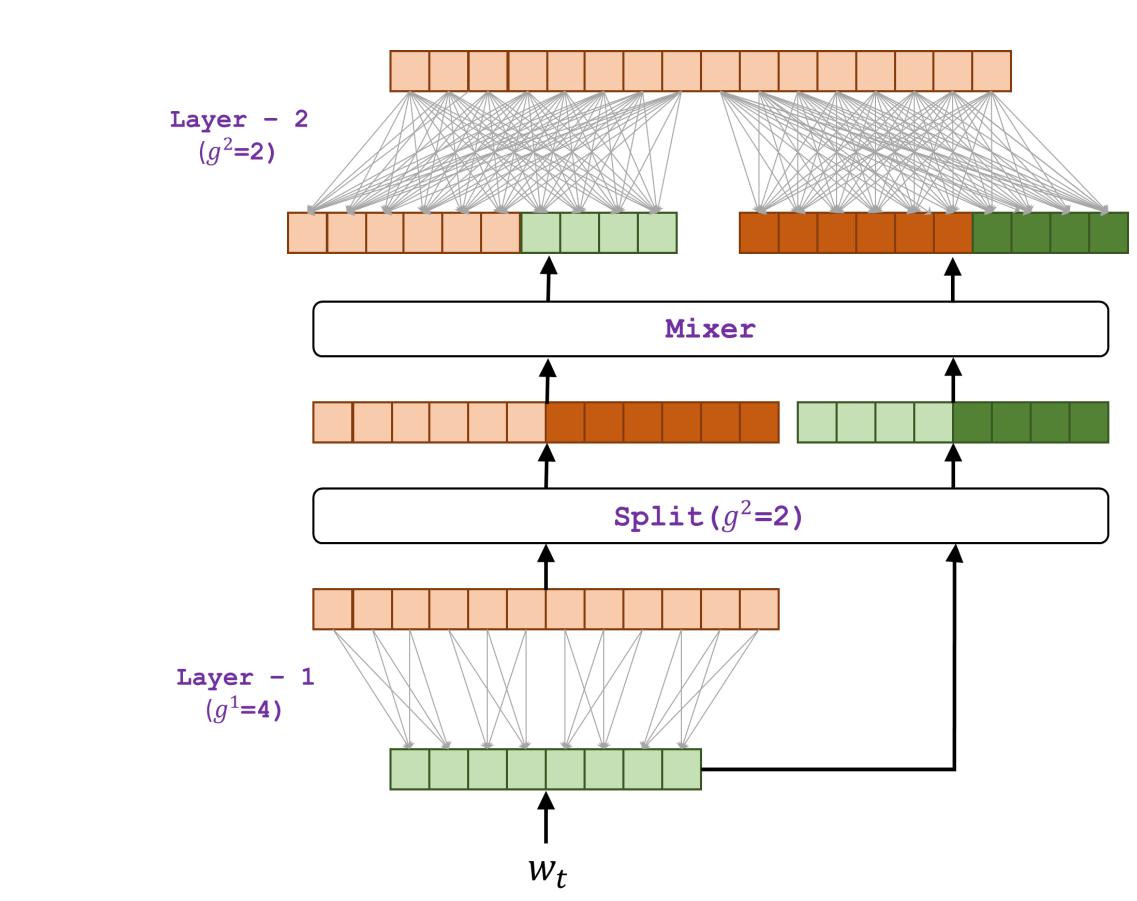
- Built using **MER** principle
- Uses **HGT** to learn representations in highdimensional space efficiently

Direct connection with the input layer

- Enables training deeper networks
- Improves performance
- Learns better representations
- Gradients flow-back via multiple paths

Comparison on WikiText-103 Test set. Lower value of perplexity is better.



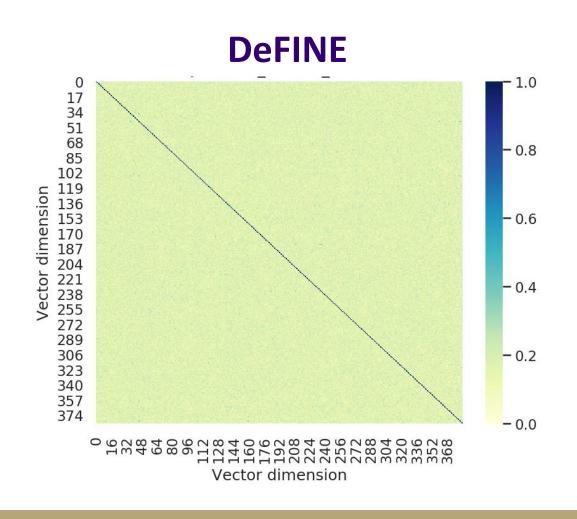


Comparison with Different Embedding Methods

- Embedding dimensions should be **independent**
- Similar to standard embeddings, DeFINE embeddings \bullet
 - Does not have correlation between dimensions i.e. independent
 - Approximates standard embeddings efficiently than widely used projective embeddings

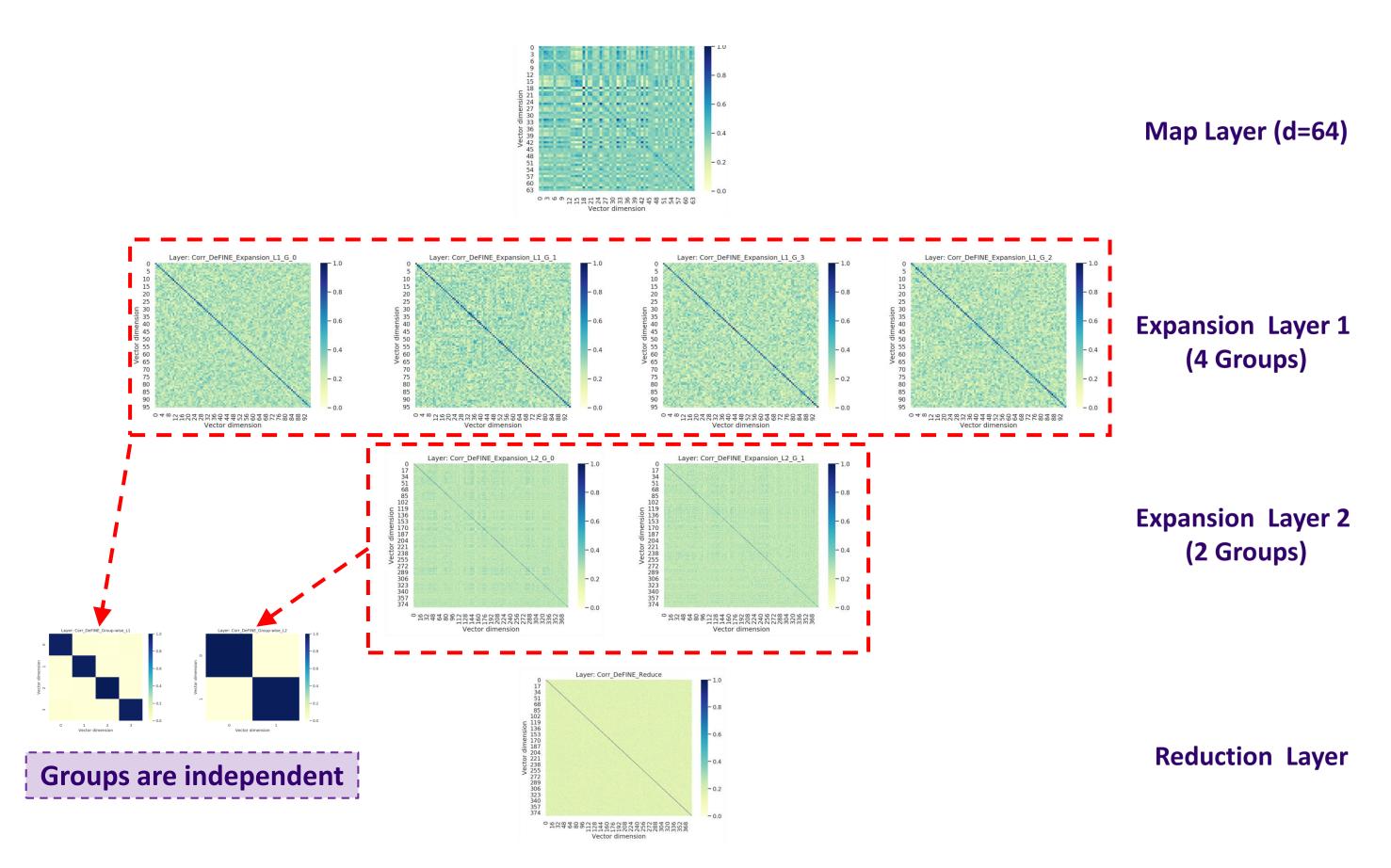
See this paper for more details: Mehta, Sachin, et al. "DeFINE: DEep Factorized INput Word Embeddings for Neural Sequence Modeling", International Conference on Learning Representations (ICLR) (2020).

nsform	Parameters	Perplexity
ear	42.86	41.19
oup	39.69	45.63
Т	40.73	40.92
INE	40.89	38.01
	<u>I</u>	



How DeFINE Approximates Standard Embedding?

- Low-dimensional mapping layer has correlations
- With depth, correlations reduces and DeFINE approximates standard embedding layer.
- Importantly, the **groups** at different layers in DeFINE are **independent**
- Suggests matrices are learning different representations of their input



Integrating DeFINE wi

AWD-LSTM on PenTree Bank Datase ! Small language modeling dataset wit 10K unique tokens

Transformer-XL on WikiText-103

Medium language modeling ! dataset with 270K unique tokens

! Transformer on WMT14 EN-DE

! Large scale machine translation ! dataset (English to German)

References

ith	State-o	of-the-art	Sequence	e Models

Model	Parameters	Perplexity
AWD-LSTM	24 M	58.8
AWD-LSTM + DeFINE	20 M	54.2
Lower perple	xity value is better.	
Model	Parameters	Perplexity
Transformer-XL	139 M	27.06
Transformer-XL + DeFINE	73 M	26.33
High BLEU	score is better.	
Model	Parameters	BLEU
Transformer	92 M	25.81

• AWD-LSTM: Merity, Stephen, Nitish Shirish Keskar, and Richard Socher. "Regularizing and optimizing LSTM language models." ICLR (2018). **Transformer-XL:** Dai, Zihang, et al. "Transformer-xl: Attentive language models beyond a fixed-length context." ACL (2019). Transformer: Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.