Sequential Experimental Design for Transductive Linear Bandits

Tanner Fiez

Electrical and Computer Engineering fiezt@uw.edu

Lalit Jain

Foster School of Business lalitj@cs.washington.edu

Kevin Jamieson

Allen School of Computer Science Electrical and Computer Engineering jamieson@cs.washington.edu

Lillian Ratliff ratliffl@uw.edu

Introduction

In many problems, there is a set of items Z with underlying structure, and the goal is to find which one maximizes a response transductively through noisy measurements of a set of probes \mathcal{X} .

Recommendations: $\mathcal{X} \subset \mathcal{Z} \subset \mathbb{R}^d$

- $\mathcal{Z} \rightarrow$ Music catalog to be evaluated including esoteric titles.
- $\mathcal{X} \rightarrow \mathsf{Drugs}$ including any experimental compounds verifiable in lab.
- $\mathcal{Z} \rightarrow \text{Drugs approved to be administered}$ to patients.

How do we sequentially and adaptively decide which measurements to take?

Problem Statement

Given: items $\mathcal{Z} \subset \mathbb{R}^d$, probes $\mathcal{X} \subset \mathbb{R}^d$, unknown parameters $\theta^* \in \mathbb{R}^d$

Measure: At each time t, observe $r_t = x_t^{\top} \theta^* + \eta_t$, where η_t is 1-subGaussian

Find: $z^* = \arg\max_{z \in \mathcal{Z}} z^\top \theta^*$

Transductive Linear Bandit Environment

Input: $\mathcal{X} \subset \mathbb{R}^d$, $\mathcal{Z} \subset \mathbb{R}^d$, $\delta \in (0,1)$. **Until** learner invokes stopping time τ

Learner selects $x_t \in \mathcal{X}$

Nature reveals $r_t \leftarrow x_t^{\top} \theta^* + \eta_t$

Output: Learner invokes recommendation $\widehat{z} \in \mathcal{Z}$

Generalization of Multi-Armed Bandits $\to \mathcal{X} = \mathcal{Z} = \{e_1, \dots, e_d\} \subset \mathbb{R}^d$

Generalization of Linear Bandits $\to \mathcal{X} = \mathcal{Z} \subset \mathbb{R}^d$.

Generalization of Combinatorial Bandits $\to \mathcal{X} = \{e_1, \dots, e_d\} \subset \mathbb{R}^d, \mathcal{Z} \subset \{0, 1\}^d$.

Problem Intuition

Consider a learner selects a non-adaptive fixed design $\{x_t\}_{t=1}^T$ and observes rewards $\{r_t\}_{t=1}^T$ and constructs a least squares estimate $\widehat{\theta} = (\sum_{t=1}^T x_t x_t^T)^{-1} (\sum_{t=1}^T r_t x_t)$. Then, $\widehat{\theta} - \theta^* \sim \mathcal{N}(0, (\sum_{t=1}^T x_t x_t^T)^{-1})$. Strategically sample to shape covariance!

 $z_* = \arg\max_{z \in \mathcal{Z}} \Longrightarrow (z_* - z)^{\top} \theta^* > 0 \quad \forall z \in \mathcal{Z} \setminus z_*$

 $\mathcal{C}(z) = \{\theta \in \mathbb{R}^d : (z-z')^\top \theta > 0 \ \forall z' \in \mathcal{Z} \setminus z\} \Longrightarrow \text{Cone of parameters for which } z = z_*$

Goal: Efficiently shrink confidence set into $C(z_*)$ to identify z_* w.p. $\geq 1 - \delta$

Illustrative Toy Example

Algorithm

Algorithm 1: $\mathbf{RAGE}(\mathcal{X}, \mathcal{Z}, \delta)$: Randomized Adaptive Gap Elimination

Input: $\mathcal{X} \subset \mathbb{R}^d$, $\mathcal{Z} \subset \mathbb{R}^d$, $\delta \in (0,1)$. Initalize: $\widehat{\mathcal{Z}}_1 \leftarrow \mathcal{Z}, t \leftarrow 1$

while $|\widehat{\mathcal{Z}}_t| > 1$ do

Experimental Design: $\lambda_t^* \leftarrow \arg\min_{\lambda \in \triangle_{\mathcal{X}}} \max_{z,z' \in \mathcal{Z}_t} \|z - z'\|_{(\sum_{x \in \mathcal{X}} \lambda_x x x^\top)^{-1}}^2$ $\rho_t \leftarrow \min_{\lambda \in \triangle_{\mathcal{X}}} \max_{z, z' \in \mathcal{Z}_t} \|z - z'\|_{(\sum_{x \in \mathcal{X}} \lambda_x x x^\top)^{-1}}^2$

Sample: $N_t \leftarrow \left[2(2^t)^2 \rho_t \log(t^2 |\mathcal{Z}|^2/\delta)\right]$

Pull arms x_1, \ldots, x_{N_t} according to λ_t^* and obtain rewards r_1, \ldots, r_{N_t}

Eliminate: Let $\widehat{\theta}_t = A_t^{-1} b_t$ $\widehat{\mathcal{Z}}_{t+1} \leftarrow \widehat{\mathcal{Z}}_t \setminus \left\{ z \in \widehat{\mathcal{Z}} | \exists \ z' \in \widehat{\mathcal{Z}} : \|z' - z\|_{A_t^{-1}} \sqrt{2 \log(t^2 |\mathcal{Z}|^2 / \delta)} < (z' - z)^\top \widehat{\theta}_t \right\}$ $t \leftarrow t + 1$ Output: $\widehat{\mathcal{Z}}_t$

Methods

Optimal Sampling Distribution $\Longrightarrow \lambda^* := \arg\min_{\lambda \in \triangle_{\mathcal{X}}} \max_{z \in \mathcal{Z} \setminus \{z_*\}} \frac{\|z_* - z\|_{(\sum_{x \in \mathcal{X}} \lambda_x x x^\top)^{-1}}^2}{((z_* - z)^\top \theta^*)^2}$

Fact: Sampling according to rounded λ^* is sufficient to achieve $\rho^* \log(|\mathcal{X}|/\delta)$.

Challenge: Optimal sampling allocation cannot be computed without knowledge of θ^* !

Question: Can the optimal sampling allocation be closely approximated using an adaptive strategy?

Idea: Apply experimental design repeatedly in stages to converge toward optimal allocation.

Define

- $S_t = \{z : (z_* z)^{\top} \theta > 2^{-t} \}$
- $\bullet \ \text{ For any } \mathcal{S} \subset \mathcal{Z} \text{, } \rho(\mathcal{S}) := \mathop{\arg\min}_{\lambda \in \text{\mathbb{Q}}_{\mathcal{X}}} \max_{z,z' \in \mathcal{S}} \|z z'\|_{(\sum_{x \in \mathcal{X}} \lambda_x x x^\top)^{-1}}^2$

Algorithm Guarantee: Arms with gaps bigger than 2^{-t} removed and $z_* \in \widehat{\mathcal{Z}}_t$ in each round.

 $\widehat{\mathcal{Z}}_t \subset S_t$ which implies $\rho_t \leq \rho(S_t)$

Algorithm Sample Complexity: At most $\rho_t(2^t)^2 \log(t^2|\mathcal{Z}|^2/\delta) < \rho(S_t)(2^t)^2 \log(t^2|\mathcal{Z}|^2/\delta)$ per round

$$\sum_{t=1}^{\log_2(1/\Delta_{\mathsf{min}}) igs }
ho(S_t) (2^t)^2 \log(t^2 |\mathcal{Z}|^2/\delta)$$

Need to compare $\sum_{t=1}^{\lfloor \log(1/\Delta_{\min})\rfloor} (2^t)^2 \rho(\mathcal{S}_t)$ to the lower bound ρ^* !

$$\rho^* = \min_{\lambda \in \triangle_{\mathcal{X}}} \max_{t \leq \lfloor \log(1/\Delta_{\min}) \rfloor} \max_{z \in \mathcal{S}_t \setminus \{z_*\}} \frac{\|z_* - z\|_{(\sum_{x \in \mathcal{X}}}^2 \lambda_x x x^\top)^{-1}}{((z_* - z)^\top \theta^*)^2}$$

$$\geq \min_{\lambda \in \triangle_{\mathcal{X}}} \max_{t \leq \lfloor \log(1/\Delta_{\min}) \rfloor} \max_{z \in \mathcal{S}_t \setminus \{z_*\}} \frac{\|z_* - z\|_{(\sum_{x \in \mathcal{X}}}^2 \lambda_x x x^\top)^{-1}}{(2^{-t})^2}$$

$$\geq \frac{1}{\log_2(1/\Delta_{\min})} \min_{\lambda \in \triangle_{\mathcal{X}}} \sum_{t=1}^{\lfloor \log_2(1/\Delta_{\min}) \rfloor} (2^t)^2 \max_{z \in \mathcal{S}_t \setminus \{z_*\}} \|z_* - z\|_{(\sum_{x \in \mathcal{X}}}^2 \lambda_x x x^\top)^{-1}$$

$$\geq \frac{1}{\log_2(1/\Delta_{\min})} \sum_{t=1}^{\lfloor \log_2(1/\Delta_{\min}) \rfloor} (2^t)^2 \min_{\lambda \in \triangle_{\mathcal{X}}} \max_{z \in \mathcal{S}_t \setminus \{z_*\}} \|z_* - z\|_{(\sum_{x \in \mathcal{X}}}^2 \lambda_x x x^\top)^{-1}$$

$$\geq \frac{1}{4 \log_2(1/\Delta_{\min})} \sum_{t=1}^{\lfloor \log_2(1/\Delta_{\min}) \rfloor} (2^t)^2 \min_{\lambda \in \triangle_{\mathcal{X}}} \max_{z, z' \in \mathcal{S}_t} \|z - z'\|_{(\sum_{x \in \mathcal{X}}}^2 \lambda_x x x^\top)^{-1}$$

$$\geq \frac{1}{4 \log_2(1/\Delta_{\min})} \sum_{t=1}^{\lfloor \log_2(1/\Delta_{\min}) \rfloor} (2^t)^2 \min_{\lambda \in \triangle_{\mathcal{X}}} \max_{z, z' \in \mathcal{S}_t} \|z - z'\|_{(\sum_{x \in \mathcal{X}}}^2 \lambda_x x x^\top)^{-1}}^2$$

Theoretical Guarantees

Key Problem-Dependent Quantity $\implies \rho^* := \min_{\lambda \in \triangle_{\mathcal{X}}} \max_{z \in \mathcal{Z} \setminus \{z_*\}} \frac{\|z_* - z\|_{(\sum_{x \in \mathcal{X}} \lambda_x x x^\top)^{-1}}^2}{((z_* - z)^\top \theta^*)^2}$

Theorem (Lower Bound)

For $\mathcal{N}(0,1)$ noise, any δ -PAC algorithm must satisfy $\mathbb{E}_{\theta^*}[\tau] \geq \rho^* \log(1/(2.4\delta))$.

→ Generalizes previous lower bounds from linear bandits and combinatorial bandits.

Theorem (RAGE Sample Complexity Bound)

Algorithm 1 identifies z_* w.p. $\geq 1 - \delta$ using a sample complexity no worse than $\rho^* \big[\log(1/\delta) + \log(|\mathcal{Z}|) + \log(\log(1/\Delta_{\min})) \big] \log(1/\Delta_{\min}) + d\log(1/\Delta_{\min}).$

Matches lower bound up to log factors!

- → Uniformly tighter bound than previous work and only existing non-asymptotic algorithm that nearly matches the problem-dependent lower bound.
- o There exists $\mathcal{X}, \mathcal{Z}, \theta^*$ such that any static allocation (such as G-optimal design) requires d times the sample complexity of best known adaptive algorithm.
- $\rightarrow d \log(1/\Delta_{\min})$ term is an artifact of efficient rounding procedure in each round.

Numerical Experiments

Benchmark: $\mathcal{X} = \mathcal{Z} = \{e_1, \dots, e_d, x'\} \subset \mathbb{R}^d$, $x' = \cos(.01)e_1 + \sin(.01)e_2$ and $\theta^* = 2e_1$ so $x_* = x_1$.

Duplicate Arms: $\mathcal{X} \subset \mathbb{R}^2$, where $\mathcal{X} = \mathcal{Z} = \{e_1, \cos(3\pi/4)e_1 + \sin(3\pi/4)e_2\} \cup \{\cos(\pi/4 + \phi_i)e_1 + e_1\}$ $\sin(\pi/4 + \phi_i)e_2\}_{i=3}^n$ with $\phi_i \sim \mathcal{N}(0,.09)$ for each $i \in \{3,\ldots,n\}$ and $\theta^* = e_1$ so that $x_* = x_1$.

Uniform Sphere: $\mathcal{X} = \mathcal{Z} \sim \text{unit sphere } \mathbb{S}^9$. The closest arms $x, x' \in \mathcal{X}$ are selected and $\theta^* = x$.

Yahoo! Click-Through: $\mathcal{X} = \mathcal{Z} \subset \mathbb{R}^{36}$ constructed from user and article features and θ^* learned from data. Rewards generated from Bernoulli($x^{\top}\theta^*$) for any arm selection $x \in \mathcal{X}$ and $|\mathcal{X}| = 40$.

Benchmark Conclusion: Highlights the potential for gains of adaptive sampling over non-adaptive sampling.

Uniform Sphere Conclusion: Highlights the gains from computing experimental design on the differences between vectors.

Duplicate Arms Conclusion: Highlights the sample complexity can be independent of the number of arms

Click-Through Conclusion: Highlights the empirical performance of RAGE on a real-world application.

About Me

Tanner Fiez is a 4th-year Electrical and Computer Engineering PhD student at the University of Washington advised by Lillian Ratliff. He previously obtained a B.S. in Electrical and Computer Engineering from Oregon State University. His research interests include multi-armed bandits and broadly sequential decision-making along with game theory. Contact: fiezt@uw.edu.

Reference: "Sequential Experimental Design for Transductive Linear Bandits," Fiez, Jain, Jamieson, Ratliff. NeurIPS, 2020.