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Introduction Algorithm

In many problems, there is a set of items Z with underlying structure, and the goal is to
find which one maximizes a response transductively through noisy measurements of a set of

probes X'.

Recommendations: X ¢ Z c R¢

X — Popular songs that can be safely

R presented to users.
THEHOT 100

Z — Music catalog to be evaluated in-
cluding esoteric titles.

X Z

X — Drugs including any experimental
compounds verifiable in lab.

Z — Drugs approved to be administered
to patients.

How do we sequentially and adaptively
decide which measurements to take?

Problem Statement

Given: items Z C R¢, probes X C R%, unknown parameters 6* ¢ R
Measure: At each time ¢, observe r, = x;r 0* + n:, where n, is 1-subGaussian

Find: z* = argmax,cz 2 ' 0*

Transductive Linear Bandit Environment

Input: X Cc R*, Z Cc R%, § € (0,1).
Until learner invokes stopping time 7
Learner selects x; € X
Nature reveals r; + x, 0* + n;

Output: Learner invokes recommendation z € Z

Generalization of Multi-Armed Bandits -+ X = Z = {ei,...,eq} C R“
Generalization of Linear Bandits -+ X = Z C R?.

,eqt C R Z C {0,1}7,

Generalization of Combinatorial Bandits — X = {e1, ..

Problem Intuition

Consider a learner selects a non-adaptive fixed design {z;}L_,
and observes rewards {r;}_, and constructs a least squares es- . s
timate 0 = (Zle xtxf)_l(Zle rixe). Then, 6—6* ~ N (0, (Zle zix) )7 L). . ': N

Ze =aArgMaX,cz = (2, —2) 0* >0 Vze€ Z\ 2,
C(z)={0cR¢:(z—2')'0 >0V € Z\ 2z} = Cone of parameters for which z = z,

Goal: Efficiently shrink confidence set into C(z,) to identify z, w.p. > 1 -9

lllustrative Toy Example

Maximize energy in direction 25 — 23 z3 identified to be optimal

29 Or z3 IS optimal
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Algorithm 1: RAGE(X, Z,6): Randomized Adaptive Gap Elimination

Input: X C R% ZCR% §€(0,1).
Initalize: Z: <+ Z,t + 1

while | Z;| > 1 do
Experimental Design: A\{ < argminye¢s, max, ,/cz, ||z — Z/”?Z:ce?ﬁ NpzwT)—1

Pt <— Minyegp , MAX, ez, |2 — Z,H?Zwex ApazT)—1

Sample: N; < [2(2")°p; log(t*|Z]*/6)] }

Pull arms z1,...,znN, according to A and obtain rewards r1,...,7nN,

Eliminate: Let 0; = A ‘b,
Zi— Z\{z€Z37 €Z: |7~ 2ll 41 v/210g(P[2]2/5) < (2 — 2) 76}
t+—t+1

Output: th
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Optimal Sampling Distribution — \* := argmin max
AEN x 2€Z\{z«}

Fact: Sampling according to rounded \* is sufficient to achieve p* log(|X|/d).
Challenge: Optimal sampling allocation cannot be computed without knowledge of 6*!
Question: Can the optimal sampling allocation be closely approximated using an adaptive strategy?

Idea: Apply experimental design repeatedly in stages to converge toward optimal allocation.

Define
+ Si={z:(z.—2)'0>27"}
» Forany S C Z, p(S) :=argmin,c, , Max; ,es ||z — ’Z/”%erx ApaaT)-1
Algorithm Guarantee: Arms with gaps bigger than 2—* removed and z, & Z, in each round.
Z, C S, which implies p; < p(S;)
Algorithm Sample Complexity: At most p;(2¢)? log(t?|Z|?/8) < p(S;)(2!)? log(t?|Z|?/5) per round
Llog, (1/Amin) ]

> A(S)(2")?log(t?2]7/9)

t=1

Need to compare Z%Bf(lmm‘”” (29)%p(S;) to the lower bound p*!
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Theoretical Guarantees
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Key Problem-Dependent Quantity —> p* := min max

AEQx2€E2\ {2}
g Theorem (Lower Bound) A
For A (0, 1) noise, any §-PAC algorithm must satisfy Ey- [7] > p* log(1/(2.46)). 5

— (Generalizes previous lower bounds from linear bandits and combinatorial bandits.
e N

Theorem (RAGE Sample Complexity Bound)
Algorithm 1 identifies z, w.p. > 1 — ¢ using a sample complexity no worse than
p*|log(1/8)+log(|Z])+log(log(1/Amin))] 10g(1/Amin) +dlog(1/Amin)-

. Matches lower bound up to log factors! )

— Uniformly tighter bound than previous work and only existing non-asymptotic algorithm that nearly
matches the problem-dependent lower bound.

— There exists X, Z, 6* such that any static allocation (such as G-optimal design) requires d times
the sample complexity of best known adaptive algorithm.

— dlog(1/Amin) term is an artifact of efficient rounding procedure in each round.

Numerical Experiments

" Benchmark: X — Z — {e1,...,eq, '} C R%, 2’ = cos(.01)e; + sin(.01)ez and 6* = 2e; SO . = . R

Duplicate Arms: X C R?, where X = Z = {e;,c0s(3m/4)e; + sin(3n/4)es} U {cos(n/4 + ¢;)e1 +
sin(m/4 + ¢;)ex}_5 with ¢; ~ N (0,.09) foreachi € {3,...,n} and 8* = e; so that z, = z;.

Uniform Sphere: X = Z ~ unit sphere S°. The closest arms z, 2’ € X are selected and 6* = z.

Yahoo! Click-Through: X = Z c R3° constructed from user and article features and 6* learned from

kdata. Rewards generated from Bernoulli(z ' 6*) for any arm selection z € X and |X’| = 40. y
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Duplicate Arms Conclusion: Highlights the sample
complexity can be independent of the number of arms.

Dimension

Benchmark Conclusion: Highlights the potential for
gains of adaptive sampling over non-adaptive sampling.
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Uniform Sphere Conclusion: Highlights the gains from com-
puting experimental design on the differences between vectors.

Click-Through Conclusion: Highlights the empirical
performance of RAGE on a real-world application.
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