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Abstract

Drones, or general UAVs, equipped with a single camera have been
widely deployed to a broad range of applications, such as aerial
photography, fast goods delivery and most importantly, surveillance.
Despite the great progress achieved in computer vision algorithms, these
algorithms are not usually optimized for dealing with images or video
sequences acquired by drones, due to challenges such as occlusion, fast
camera motion and pose variation. In this paper, a drone-based multi-
object tracking and 3D localization scheme Is proposed based on the
deep learning-based object detection. We first combine a multi-object
tracking method called TrackletNet Tracker (TNT) which utilizes temporal
and appearance information to track detected objects located on the
ground for UAV applications. Then, we are also able to localize the
tracked ground objects based on the group plane estimated from the
Multi-View Stereo technique. The system deployed on the drone can not
only detect and track the objects in a scene but can also localize their 3D
coordinates in meters with respect to the drone camera. The experiments
have proved our tracker can reliably handle most of the detected objects
captured by drones and achieve favorable 3D localization performance
when compared with the state-of-the-art methods.
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Semi-Direct Visual Odometry (SVO)
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e Block Matching by Epipolar Constraint:
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Tablel: Tracking performance on the VisDrone2018-MOT test set compared to state-of-the-art. Best in
bold, second best in blue.

Tracker MOTA 1T IDF1 T MT T ML | FP | FN | [Dsw. |
V_I0U [5] 40.2 56.1 297 514 11,838 74,027 265
TrackCG [40] 42.6 58.0 323 395 14,722 68,060 779
GOG_EOC [25] 36.9 46.5 205 589 5,445 86,399 754
SCTrack [1] 35.8 45.1 211 550 7,298 85,623 798
Ctrack [41] 30.8 51.9 369 375 36,930 62,819 1,376
FRMOT [29] 33.1 50.8 254 463 21,736 74,953 1,043
GOG [25] 38.4 45.1 244 496 10,179 78,724 1,114
CMOT [2] 31.5 51.3 282 435 26,851 72,382 789
Ours 48.6 58.1 281 478 5,349 76,402 468
Table2: Mean localization error(standard deviation in parenthesis) in meters.
Approach Scene Overall (m) <=10m <=25m >25m
Campus 3.84(+1.67) | 4.05(£1.42) 4.76(+2.06) N/A
Det+Flat_Ground_Asmp | Grass land 3.96(+1.74) | 2.41(£1.32) 3.98(x2.01) N/A
Basketball field | 6.74(+3.15) | 6.04(£2.78) 8.66(+3.18) 12.30(+3.84)
Campus 2.22(+£1.12) | 2.04(+0.78) 2.61(+1.47) N/A
Det+0ur_Ground_Est Grass land 2.27(x1.16) | 1.15(x0.77) 1.98(+1.43) N/A
Basketball field | 3.21(+1.84) | 2.49(x1.66) 4.47(+2.12) 6.71(+2.33)
Campus 0.49(+0.31) | 0.47(+£0.08) 1.21(+0.54) N/A
Det+Trk+0Our_Ground_Est | Grass land 0.78(+0.31) | 0.21(£0.08) 0.94(£0.35) N/A
Basketball field | 2.07(+1.46) | 1.97(%1.22) 2.42(+1.74) 3.87(%1.95)
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