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Computer-assisted surgery (CAS) and robotics reduce complications through the use 

of advanced instruments, control and visualization. Real-time tracking of surgical tools 

enable application of various computer-assisted techniques., such as augmented

reality, to improve clinical outcomes.

We present our convolutional neural network designed for multi-task learning, 

to both track and perform semi-supervised instrument segmentation for real-

time use during surgery.

Overview

To perform data-driven surgical procedures, including robotic surgery, it is important 

to analyze instrument trajectories. Benefits include:

• Surgical workflow optimization

• Localization and relative pose estimation

• Instrument collision prediction/analysis

• Visual Servoing
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Methods

Our method builds on top of Fully Convolutional Siamese Networks, trained on pairs 

of input video frames[4]. 

The Siamese network is trained on three tasks to establish correspondences between 

target object and candidate regions in new frames:

1. Learn measure of similarity between target object and multiple candidates in a 

sliding window approach [1]

2. Bounding box regression using Region Proposal Network [2]

3. Class-agnostic Binary Segmentation [3] 

We obtain a multi-channel response map by processing an exemplar image(z) and a

search image(x) through a Siamese network, yielding two depth-wise cross-

correlated feature maps:

𝒈𝒕𝒉 𝒛, 𝒙 = 𝒇𝒕𝒉 𝒛 ∗ 𝒇𝒕𝒉 𝒙

For the box predictions, we use the 𝐿1 loss for the box and cross-entropy losses for 

obtaining the score in the region proposal network. 

To obtain the pixel-wise binary mask, we introduce an additional head, where mask 

prediction is a function of image to segment, x and target object, z

𝒎𝒏 = 𝒉𝒑𝒉𝒊 𝒈𝒕𝒉
𝒏 𝒛, 𝒙

Backbone Architecture (f_th)

For the backbone, we make use of the ResNet-ro architecture (until the final convolution layer

of the 4th stage). All models are trained using COCO, ImageNet-VID and YouTube-VOS, and 

fine-tuned on the surgical instrument dataset we have generated, called NeuroID.

Proposed improvements:

1. We are currently working on improving the network performance under heavy occlusion 

conditions

2. Another challenge is maintaining the frame rate when there are multiple instruments in 

the frame, which we hope to alleviate by using a lighter backbone network 

Schematic Illustration of Network
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block examplar
output size

search output size backbone

Conv1 61 × 61 125 × 125 7 × 7, 64, stride 2

Conv2_x 31 × 31 63 × 63 3 × 3 max pool, stride 2
1 × 1, 64
3 × 3, 64
1 × 1, 256

× 3

Conv3_x 15 × 15 31 × 31 1 × 1, 128
3 × 3, 64
1 × 1, 512

× 4

Conv4_x 15 × 15 31 × 31 1 × 1, 256
3 × 3, 256
1 × 1, 1024

× 6

adjust 15 × 15 31 × 31 1 × 1, 256

xcorr 17 × 17 Depth-wise

Mask prediction:

𝑳𝒎𝒂𝒔𝒌 𝒕𝒉, 𝒑𝒉𝒊 = σ𝒏
𝟏+ 𝒚𝒏

𝟐𝒘𝒉
σ𝒊𝒋 𝐥𝐨𝐠 𝟏 + 𝒆−𝒄𝒏

𝒊𝒋
𝒎𝒏
𝒊𝒋

where 𝑦𝑛 is the ground-truth label, 𝑐𝑛 is the ground-truth mask.

The total loss is:

𝑳𝒕𝒐𝒕𝒂𝒍 = 𝝀𝟏𝑳𝒎𝒂𝒔𝒌 + 𝝀𝟐𝑳𝒔𝒄𝒐𝒓𝒆 + 𝝀𝟑𝑳𝒃𝒐𝒙
In the two-variant head, we do not include the loss function for the box. 

Fig2: Architecture showing the two- (L) and three-branch (R) variations we used for tracking and segmentation.
Fig3: Results on suction instrument across frames. The model refines its segmentation between frames and improves on its prediction.

Fig1: Ground Truth Annotations from the NeuroID Dataset

Fig4: The network has some limitations wrt segmenting instruments which are occluded by the surgeon’s hand. They, however, can 
perform well under occlusion from another instrument. 

For generating a bounding box from the segmentation map, we used a rotated mimum

bounding rectangle. We also tested with the optimization strategy for automatic bounding 

box in [5]. 

The network performed at an average of 57 frames per second (fps) on an NVIDIA TX 2060 

GPU. The feature extractor used a large amount of this processing time.

Evaluation on VOT-2016: mIOU for the network was 67.15% using the Minimum bounding 

rectangle evaluation and 71.68% while using the optimization strategy from [5] for the BBox. 


