Online Continuous DR-Submodular Maximization with Long-Term Budget Constraints [1]

Diminishing Returns (DR) Property

A differentiable function F : K — R, K C R’jr,
satisfies the Diminishing Returns (DR) property if:

x =y = VF(x) X VF(y)

e |f F is twice differentiable, the DR property is
equivalent to [ V*F(x)];; < 0 Vi j€[n],x €K.

e For n = 1, the DR property is equivalent to
concavity, however, for n > 1, they are not
equivalent.

Functions which satisfy the DR property are called

“smooth submodular” and “DR-submodular” in the

literature.

Introduction

Motivating Application: Online Ad Placement

maximizey,c Z; 1 fe(x¢)

subject to ZL (ps, Xt) < Br

e At round t € [ T], an advertiser should choose an
iInvestment vector x; € X over n different
websites where [ x;]; denotes the amount that the
advertiser is willing to pay per each click on the ad
on the i-th website.

e The cost of an investment is {p;, x;) where [ p:]; is
the number of clicks the ad on the i-th website
receives.

e p; Vt € [ T] is not known in advance and could be
adversarial.

e The advertiser needs to balance her total
investment against an allotted long-term budget
Br.

e At round t € [ T], the advertiser’s utility function
f:(x:), quantifying overall amount of impressions of
the ads, is monotone DR-submodular, i.e., making
an ad more visible will attract proportionally fewer
extra viewers because each website shares a
portion of its visitors with other websites.
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Performance Metric

Definition (Regret Metric)

Input: Domain set &', horizon T, u, 6 and K
Output: {x;:1<t<T}

Initialize K instances & Vk € [ K] of Online Gradi-
ent Ascent with step size u for online maximization

The (1— é)-regret is defined as:

1T T
Rr=(1— ;) Z fi(x ) — Z fe(xt)

of linear functions over &

where:
AM=0
= arg ?ax th(x) v = 0 Vk € [K]
e t+W_1 W fort=1to T do
Zw={x€eZ: )Y (pux ) < Br 1StST—W+1} xM =0
T=t fork=1toKdo

ka) = Py (Vfﬂ + Hvxzt—1(ng)1i )\t—1))
Xt(-k+1) — X(k) + %v(k)

Definition (Total Budget Violation Metric)

end for
The total budget V|oIatT|on is defined as follows: Play x, = ng“) o oheerve the function
5
Cr= Z(Pt, Xt) — Bt Zt(xt, )\t) — ft(Xt) — )\tgt(xt) + 7u)\f
=1 fork=1toKdo

Feedback (vfk), VX.,Sft(xgk), At)) as the payoff to

Goal: Design an online algorithm which achieves be received by &

sub-linear bounds for both the (1— é)-regret Rt and end for .
the budget violation Cs. Atr1 = [Ae— UV ZLi(xt, At) ]+
end for
For u = vaTT’ 6 = 4B% and any A > O, if T is large enough, we have:
SU_ A2 G
R+ CtA — ;TA — — < (F+BR)(W—1) + E(G + BR)u(W —1)(T—1)
U
R ot grve O LR?
+ —+ (G° + B°)uT + ?u(W—D(T W+ 1)+ g(T W+ 1)
u

For W = o(T), if we choose u = vaTT = ﬁ(ﬁ) and K = 0’(\/%), the (1— é)-regret Rr and budget violation
Ct satisfy the following:

Ry < @ (¥ WT)

Cr < 0(WiT9)
Thus, for W = T ¢ Ve > 0, the (1— 1) -regret and budget violation of the OSPHG algorithm is ﬁ(T1_‘) and
ﬁ(T1_Z) respectively and hence sub-linear.

Algorithm

Algorithm 1 OSPHG Algorithm

We defined & = {x € R":0 <X x <1} and for all
t € [T], we randomly generated monotone

non-convex/non-concave quadratic utility functions
of the form fi(x) = %XTHtX -+ th where H;, € R"™"js
a random matrix with uniformly distributed
—H/1to
make the gradient non-negative. Therefore, the

non-positive entries in [—1, 0] and h; =

utility functions are of the form fi(x) = (%x — 1) Hyx.
For allt € [ T], we generated random linear budget

functions such that p; has uniformly distributed
entriesin[2, 4]. We set T = 10000, n = 2, By = 2T
and K = 100.
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