Online Continuous DR-Submodular Maximization with Long-Term Budget Constraints [1]

Diminishing Returns (DR) Property

Definition

A differentiable function $F : K \rightarrow \mathbb{R}, K \subset \mathbb{R}^{n}_{+}$, satisfies the Diminishing Returns (DR) property if:

$$x \succeq y \Rightarrow \nabla F(x) \preceq \nabla F(y)$$

- If F is twice differentiable, the DR property is equivalent to $[\nabla^2 F(x)]_{i,j} \leq 0 \forall i, j \in [n], x \in K.$
- For n = 1, the DR property is equivalent to concavity, however, for n > 1, they are not equivalent.

Functions which satisfy the DR property are called "smooth submodular" and "DR-submodular" in the literature.

Introduction

Motivating Application: Online Ad Placement

maximize_{$x_t \in \mathscr{X}$} $\sum_{t=1}^{T} f_t(x_t)$ subject to $\sum_{t=1}^{T} \langle p_t, x_t \rangle \leq B_T$

- At round $t \in [T]$, an advertiser should choose an investment vector $x_t \in \mathscr{X}$ over *n* different websites where $[x_t]_i$ denotes the amount that the advertiser is willing to pay per each click on the ad on the *i*-th website.
- The cost of an investment is $\langle p_t, x_t \rangle$ where $[p_t]_i$ is the number of clicks the ad on the *i*-th website receives.
- $p_t \forall t \in [T]$ is not known in advance and could be adversarial.
- The advertiser needs to balance her total investment against an allotted long-term budget B_{T} .
- At round $t \in [T]$, the advertiser's utility function $f_t(x_t)$, quantifying overall amount of impressions of the ads, is monotone DR-submodular, i.e., making an ad more visible will attract proportionally fewer extra viewers because each website shares a portion of its visitors with other websites.

Omid Sadeghi, Maryam Fazel

University of Washington, Seattle

Performance Metric

Definition (Regret Metric)

The $(1 - \frac{1}{2})$ -regret is defined as:

$$R_T = (1 - \frac{1}{e}) \sum_{t=1}^{T} f_t(x_W^*) - \sum_{t=1}^{T} f_t(x_t)$$

where:

$$x_{W}^{*} = \underset{x \in \mathscr{X}_{W}}{\operatorname{arg\,max}} \sum_{\substack{t=1 \ t+W-1 \ t+W-1}}^{T} f_{t}(x)$$
$$\mathscr{X}_{W} = \{x \in \mathscr{X} : \sum_{\tau=t}^{t+W-1} \langle p_{\tau}, x \rangle \leq \frac{W}{T} B_{T}, \ 1 \leq t \leq T-W+1\}$$

Definition (Total Budget Violation Metric)

The total budget violation is defined as follows:

$$C_T = \sum_{t=1}^{\prime} \langle p_t, x_t \rangle - B_T$$

Goal: Design an online algorithm which achieves sub-linear bounds for both the $(1 - \frac{1}{e})$ -regret R_T and the budget violation C_T .

Main Lemma

For $\mu = \frac{R}{\beta \sqrt{WT}}$, $\delta = 4\beta^2$ and any $\lambda \ge 0$, if T is large enough, we have:

$$R_{T} + C_{T}\lambda - \frac{\delta\mu}{2}T\lambda^{2} - \frac{\lambda^{2}}{\mu} \leq (F + \beta R)(W - 1) + \frac{G}{2}(G + \beta R)\mu(W - 1)(T - 1) + \frac{R^{2}}{\mu} + (G^{2} + \beta^{2})\mu T + \frac{G^{2}}{2}\mu(W - 1)(T - W + 1) + \frac{LR^{2}}{2K}(T - W + 1)$$

Regret and Budget Violation Bound

For W = o(T), if we choose $\mu = \frac{R}{\beta\sqrt{WT}} = O(\frac{1}{\sqrt{WT}})$ and $K = O(\sqrt{\frac{T}{W}})$, the $(1 - \frac{1}{e})$ -regret R_T and budget violation C_T satisfy the following:

$$R_T \leq \mathscr{O}(\sqrt{WT})$$
$$C_T \leq \mathscr{O}(W^{\frac{1}{4}}T^{\frac{3}{4}})$$

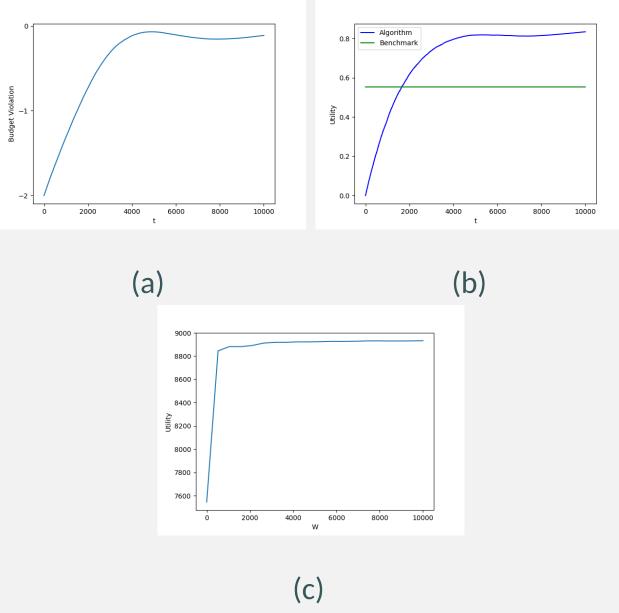
Thus, for $W = T^{1-\epsilon} \forall \epsilon > 0$, the $(1 - \frac{1}{\epsilon})$ -regret and budget violation of the OSPHG algorithm is $\mathcal{O}(T^{1-\frac{\epsilon}{2}})$ and $\mathcal{O}(T^{1-\frac{\epsilon}{4}})$ respectively and hence sub-linear.

Algorithm

Algorithm 1 OSPHG Algorithm **Input:** Domain set \mathscr{X} , horizon T, μ , δ and K **Output:** $\{x_t : 1 \le t \le T\}$ Initialize K instances $\mathscr{E}_k \forall k \in [K]$ of Online Gradient Ascent with step size μ for online maximization of linear functions over \mathscr{X} $\lambda_1 = 0$ $\mathbf{v}_{0}^{(k)} = 0 \; \forall k \in [K]$ for t = 1 to T do $x_{1}^{(1)} = 0$ for k = 1 to K do $v_{t}^{(k)} = \mathscr{P}_{\mathscr{X}} \left(v_{t-1}^{(k)} + \mu \nabla_{x} \mathscr{L}_{t-1} (x_{t-1'}^{(k)}, \lambda_{t-1}) \right)$ $x_{t}^{(k+1)} = x_{t}^{(k)} + \frac{1}{\kappa} v_{t}^{(k)}$ end for Play $x_t = x_t^{(K+1)}$ and observe the function $\mathscr{L}_t(\mathbf{x}_t, \lambda_t) = f_t(\mathbf{x}_t) - \lambda_t g_t(\mathbf{x}_t) + \frac{\delta \mu}{2} \lambda_t^2$ for k = 1 to K do Feedback $\langle v_t^{(k)}, \nabla_x \mathscr{L}_t(x_t^{(k)}, \lambda_t) \rangle$ as the payoff to be received by \mathcal{E}_k end for $\lambda_{t+1} = [\lambda_t - \mu \nabla_{\lambda} \mathscr{L}_t(\mathbf{x}_t, \lambda_t)]_+$ end for

Experiments

We defined $\mathscr{X} = \{x \in \mathbb{R}^n : 0 \leq x \leq 1\}$ and for all $t \in [T]$, we randomly generated monotone non-convex/non-concave quadratic utility functions of the form $f_t(x) = \frac{1}{2}x^T H_t x + h_t^T x$ where $H_t \in \mathbb{R}^{n \times n}$ is a random matrix with uniformly distributed non-positive entries in [-1, 0] and $h_t = -H_t^T \mathbf{1}$ to make the gradient non-negative. Therefore, the utility functions are of the form $f_t(x) = (\frac{1}{2}x - 1)^T H_t x$. For all $t \in [T]$, we generated random linear budget functions such that p_t has uniformly distributed entries in [2, 4]. We set T = 10000, n = 2, $B_T = 2T$ and K = 100.



lengths $1 \le W \le T$

References

[1] Omid Sadeghi and Maryam Fazel. Online continuous dr-submodular maximization with long-term budget constraints. arXiv preprint arXiv:1907.00316, 2019.

Figure: (a) Budget violation running average $\frac{\sum_{\tau=1}^{t} g_{\tau}(x_{\tau})}{t}$ of OSPHG algorithm for $W = \sqrt{T}$ (b) Utility performance running average $\frac{\sum_{\tau=1}^{t} f_{\tau}(x_{\tau})}{t}$ of OSPHG algorithm for $W = \sqrt{T}$ vs. utility of the benchmark (c) Utility of the benchmark for different window

ELECTRICAL & COMPUTER ENGINEERING

UNIVERSITY of WASHINGTON