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Introduction

Trajectory tracking (comparing actual
motion to desired motion) allows the
robust realization of predefined behaviors
in real-world robots. For legged robots,
every footfall corresponds to a sudden
change in velocity, causing a large
tracking error when the desired and
actual trajectories impact at different
times. We seek to construct a locally
continuous intrinsic distance measure for
tully-actuated mechanicals systems
undergoing inelastic collisions.

Conclusion

Locally, a mechanical system undergoing
impacts is equivalent to a switched
system. For perfectly elastic impacts, we
develop a local reference tracking
controller in the switched system € and
show tracking in C is equivalent to
tracking in C away from impacts. While the
the mirror law [4] provides global results,
our method provides a potential way to
extend to inelastic collisions.

Future work will be extending the control
law for cases with inelastic and pertectly
plastic impacts.
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Tracking a perfectly elastic bouncing ball through impacts @ 5

The bouncing ball is governed by two sets of dynamics, one
being gravity and the other the reset that occurs at a height h

of 0. The reset law R: TC — TC maps velocity pre-impact velocity
to post-impact velocity,

R(h,h) = (h,—h).

P: C — C defines a map that takes trajectories generated in the
extended space C to trajectories that undergo impacts [1].
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Defining the dynamics on C such that a trajectories in C map to
trajectories in C under P [2] yields a continuous switched system.

Let be the reference trajectory in C, then

= F(h(¢t),h(t)) = - _:Z Zgg i 8

Using results from geometric control [3], the reference trajectory
can be tracked on C, implying tracking on C away from impacts.

Let G(t) be the actual trajectory in C, then

G = E (40,4 (0,70, (1)
=F( | )+ K, ( —’q(t))+1<d( —’éj(t)).
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