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GENE REGULATORY NETWORK INFERENCE

Most biological processes, either in development or disease progression are gov-
erned by complex gene requlatory networks. Hence inferring these networks is of
vital importance to biologists. However there are many challenges here to tackle,
including but not limited to distinguishing upstream regulatory genes from their
targets directly downstream.

SINGLE-CELL TRANSCRIPTOME SEQ EXPERIMENTS

Single-cell transcriptome sequencing experiments (scRINAseq) have attracted the at-
tention of algorithm developers working on gene regulatory network inference for
two reasons. First, scRNAseq experiments now routine produce thousands of inde-
pendent measurements may open the door to sufficiently powered inference. Sec-
ond, algorithms that order cells along "trajectories” that describe development or
disease progress offer a tremendously high "pseudotemporal” view of gene expres-
sion kinetics.

— One might think of inferring these regeulatory relationships via the methods
tailored for temporal data.
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Figure 1: Various Transcriptomic Temporal Experiments.

SCRIBE PACKAGE

o A Information Theoretic based causal inference method from temporal data
e Agnostic to the particular measurement technology used in the experiment

o Incorporates a visualization framework to visualize 1) The response function, 2)
Causal interaction as well as 3) combinatorial regulation between gene pairs

Figure 2: Scribe in a Nutshell.

WHAT’S INSIDE SCRIBE?

- Restricted Directed Information (RDI):

RDI(X = Y|Z) = (X(t—1);Y ()Y (t —1),Z(t — 1))

- Uniform Restricted Directed Information (uRDI):

In RDI, we replace the ordinary Conditional Mutual Information (CMI) with uni-
form CML:

uCMIx_y 7z (Py|x,z) = CMIx v z(Ux,zPy|x,2)

- Estimators implemented: KSG-based KNN estimators:

e Proven to be consistent.

o Their finite-sample performance is shown to be superior to that of the alterna-
tive estimators.

- The Scheme of the overall algorithm:
1. Calculate the unconditioned pairwise RDI/uRDI for every pair of genes (i, 7).

2. For each pair (¢, j), find the L incoming genes to j with the highest RDI values
excluding ¢ itself.

3. Recalculate the pairwise RDI/uRDI for (i, j) conditioned on the L genes above.

SCRIBE APPLIED TO SYNTHETIC DATA

¢ Emulated a 13-gene nonlinear Neurogenesis system.

o All four Real-time, Live-imaging, RNA velocity and pseudo-time data created
from the system.
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Figure 3: Results on Neurogenesis data.

SCRIBE APPLIED TO REAL DATA

- Recovering Myoplesis Network:
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Figure 4: Scribe recovers a core regulatory network responsible for myelopoiesis. (A) A core
network describes key regulators during the specification of monocytes and granulocytes
based on data collected from perturbation experiments, bulk ATAC-seq and ChIP-seq data.
(B) Examples of gene-target pair kinetic curves over pseudotime along the monocyte lineage.
(C) Scribe infers the expected core regulatory network interactions for myelopoiesis. Only
significant edges are plotted while color of edge corresponds to the causality score. (D) Visu-
alization of combinatorial gene regulation from Irf8 and Gfil to Zeb2 or Per3.

- Inference from the Velocity Data:
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Figure 5: Network inference in Scribe with RNA-velocity. (A) RNA-velocity vector projected
onto the first two latent dimensions. S: Sympathoblasts; C: Chromatfin. SCP: Schwann Cell
Progenitor. (B) A core regulatory network for chromaffin cell commitment inferred based
on RNA-velocity. The width of the edge corresponds to the normalized causality score re-
turned after applying CLR regularization on RDI values. (C) Two potential coherent FFL
(feed-forward loop) motifs of chromaffin differentiation are discovered from the core net-
work. Edge width corresponds to the regulation strength.

COMMENTS

o Gene regulatory network inference from observational measurements is
widely regarded as amongst the most ditficult problems.

o The quality of the data collection experiments needs to be improved: Noise
and Dropouts are still big challenges.

o Lack of temporal/spatial coupling between gene measurements drastically
hurst the quality of inference.




