

ELECTROMAGNETIC COUPLING IN MARS SOIL SIMULANTS TO SUPPORT MARS ISRU WATER EXTRACTION

- reduce mission mass and cost (\$\$)

- Mars Reconnaissance Orbiter (MRO)

ELECTRICAL & COMPUTER ENGINEERING

UNIVERSITY of WASHINGTON

STUDENT: SHANTI GARMAN

ADVISOR: YASUO KUGA

Thermal Response Due to Frequency (Initial System)

Thermal Response Due to Transmitted Power

- Experimental results at right and below use both initial transmission system (gold curve) and dual-power system (purple curve)
- Thermal rise approaching level required for sublimation (melt)

	Total Thermal Rise	
	ΔT, Cold (T= -80°C)	
		Dual-
	Initial	Power
Frequency	(P _{out} = 31	(P _{out} = 34
(GHz)	dBm)	dBm)
10	15.7	48.2

Future Work, References, and Acknowledgments

- Experiments ongoing with dualamp across 8-11 GHz
- EM coupling relationship to wate content ("icy soil" experiments)
- Measure and compare response JSC-Rocknest simulant
- Investigate EM coupling relation to soil grain size

Faculty: Yasuo Kuga Graduate Student: Shanti Garman Undergraduate Students: Oliver Ruo, Salma Hass

• Experimental results left and below use initial microwave transmission system (transmitted power *P*_{out}=+31 dBm)

Total Thermal Rise	
∆T, Amb	∆T, Cold
(T= +20°C)	(T= -80°C)
41.6	29.9
35.0	18.4
31.5	15.7
	Total The ∆T, Amb (T= +20°C) 41.6 35.0 31.5

-power er	[1] O. Igbinosun. 2019. Characterization of Mars Analog Soils with Microwave Radiation to Investigate Subsurface Water Extraction Utilizing Dielectric Heating. Doctoral Dissertation, University of Washington.
e of	[2] E. Ethridge, W. Kaukler. 2012. Finite Element Analysis of Three Methods for Microwave Heating of Planetary Surfaces. In Proceedings of the 50th AIAA Aerospace Sciences Meeting.
iship	[3] P. Hoekstra, W. T. Doyle. 1970. Dielectric Relaxation of Surface Adsorbed Water. In Journal of Colloid and Interface Science, Vol. 36, No. 4., 513-521.
anain	[4] J.V. Hogancamp, P.D. Archer, J. Gruener, D.W. Ming, V. Tu. 2019. JSC-Rocknest: A large-scale Mojave Mars Simulant (MMS) based soil simulant for in-situ resource utilization water-extraction studies. In Proceedings of 50th Lunar and Planetary Science Conference.