Computationally Enabled, Robust, Low-Power True Random Number Generation (TRNG)

Tyler Terhune, Akshat Boora, Xun Sun, Wenbing Zhang, Rajesh Pamula, Sung Min Kim, Baosen Zhang and Visvesh Sathe

Electrical and Computer Engineering, University of Washington

Key TRNG Metrics

- Randomness Quality (entropy rate H)
- Robustness (PVT/attack resistance)
- Efficiency (pJ/output-bit)
- Throughput/Bitrate (Gbps)

Existing Approach: Circuit Design Driven

- Minimize bias B=P(X=1) 0.5 (ideally 0)
- Autocorrelation ignored or an afterthought
- Fundamental limiter to Randomness
 - PVT Variation induced Bias
 - Finite Bandwidth, 1/f noise induced correlation between bits

Computationally enabled TRNG design^{1,2}

ENGINEERING

• Design "good-enough" physical RNGs (PhyRNGs) Integrated post-processing first whitens bitstream (correlation removal), then **eliminates** bias

NIST Pub 800-90B Entropy Assessment (All "PASS" Test **Results on 1Mb** bitstream (score,DOF) 100 PASS (NA,NA) IID Permutation **Chi-square** PASS (1892, 2047) Independence 0.99 **Chi-square** PASS (5.83, 9) 1.0 **Goodness of fit** 0.99 **LRS Test** PASS (NA, NA) 0.97 Min. Entropy 0.996 1.0 **Restart Test** PASS (NA, NA) 1.0 DOF: degrees of freedom, NA: Not applicable 0.97 0.97 **NIST-Compliant**

Challenges

- Proposed TRNG architecture achieves quality, robustness, efficiency and bitrate
- Significant advance in correlation, **BUT** significant room for improvement
 - MC-Router does not scale well (2ⁿ lanes required for lag-n decorrelation
 - MC-based whitening addresses stationary autocorrelation sources, not non-stationary ones (e.g. 1/f noise). LFSR still required to achieve robust NIST compliance

Broader Impact

1.0

Min. Energy

0.53

-20

1.0

0.99

1.0

0.98

1.0

1.0

0.99

0.98

0.99

- Robust and balanced architecture applicable broadly applicable across TRNG implementations: (FPGA/ASIC/SoCs)
- Findings covered as part of a week-long module in the Advanced VLSI design course at the University of Washington

References 1.V. Pamula et al., "An all-digital true-random-number generator with integrated de-correlation and bias correction at 3.2-to-86 Mb/s, 2.58 pJ/bit in 65-nm CMOS", In 2018 IEEE Symposium on VLSI Circuits 2018, Jun. 18

- 2.V. Pamula et al.,"A 65-nm CMOS 3.2-to-86 Mb/s 2.58 pJ/bit Highly Digital True-Random-Number Generator With Integrated De-Correlation and Bias Correction." IEEE Solid-State Circuits Letters. 2018 Dec;1(12);237-240
- 3.Y. Peres "Iterating Von Neumann's Procedure for Extracting Random Bits", The Annals of Statistics. 20. 10.1214/aos/1176348543.

The 4th NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting (2019 SaTC PI Meeting) October 28-29, 2019 | Alexandria, Virginia