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SOLUTION: Generalize potential-based methods
to stochastic policies and continuous state/
action spaces

« AC-PBA : algorithm on actor-critic architecture
augmented with potential-based advice
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SOLUTION: Feedback-based Reward Shaping (FRESH) in
high-dimensional spaces with sparse/ delayed rewards

« MECHANISM: feedback neural network to effectively
represent human feedback & predict model uncertainty

« At each state in the trajectory, the operator indicates
whether the action taken in that state is good or bad

« A deep feedback neural network is used to allow the deep
RL algorithm to generalize feedback signals (also be able
to predict model uncertainty) obtained during training to
unseen states and actions at test-time

« An algorithm, AC-PBA, describing an advantage
actor-critic architecture augmented with
potential-based advice (PBA)

« Guarantees on AC-PBA’s convergence.




