Consensus-Based Distributed Voltage Regulation

Yao Long, Ryan T. Elliott and Daniel S. Kirschen **Electrical and Computer Engineering, University of Washington**

Introduction

Rooftop photovoltaic (PV) are causing voltage problems: **Overvoltage; Fluctuation; Nodal magnitude difference**

Distribution system voltage regulation requirements: **Distributed; Coordinated; Real-time;**

Distribution system voltage regulation objective:

Voltage range: $\underline{V} \leq V \leq V$;

PV inverter reactive power range: $Q \le Q \le Q$; *Fair utilization of PV inverter: $Q_i / \overline{Q_i} = Q_j / \overline{Q_j} = u$

- \bullet

Within Group Coordination (how to cooperate?)

Local droop: Early saturation

Voltage Regulation Group (when to cooperate?)

(a) Max-consensus: assess highest voltage (b) Min-consensus: assess lowest voltage

Assess global voltage status through peer-to-peer communication Separate into different groups when regulation objectives conflict

Achieve fair-allocation based on capacity within each group

Excessive use of few PVs

After consensus:

Fair allocation of voltage

regulation burden

Control Performance

• Local control:

Undervoltage exists due to the saturation of certain local PV inverter

Common consensus algorithm without group separation: Overvoltage exists when conflicting objectives coexist, and all PV inverters choose to support the undervoltage at certain nodes