
TIANYI ZHOU, SHENGJIE WANG, JEFF A. BILMES, MELODI LAB@UW ECE

Human forget things fast, but repeatedly revisiting the same
things helps learning and improves the persistence of memory.

How to measure the memorization of ML models (e.g., Deep
Neural Nets) on each sample? Dynamic Instance Hardness!

Three Observations of Dynamic Instance Hardness
Observation I: DNNs have very different training dynamics on
samples with small and large DIH.

• We split the training set into three groups at epoch 10/40/210, according to DIH computed over history.
• The plots show how the prediction flip (LEFT) and loss (RIGHT) of samples from the three groups change during training.

B D

Epoch 10

Epoch 40

Epoch 210

Epoch 10

Epoch 40

Epoch 210

Observation II: DIH in early epochs suffices to identify the easy (to
remember) vs. the hard (to remember) samples.

• LEFT: We compute the overlap between the top-10k group with the largest r at epoch i and j for every i and every j > i.
• RIGHT: We compute the overlap between the top-10k group with the smallest r at epoch i and j for every i and every j > i.

Observation III: DIH
metrics decrease during
training for both easy and
hard samples:
Neural nets improves its
memorization on all data
during training.

Dynamic Instance Hardness and Memorization Curriculum Learning for better Memorization

short time,
big progress,
efficient

long time,
small progress,
inefficient

Why do learning curves of ML models always look like this?

• Idea: train forgettable samples more frequently and
spend less efforts on memorable samples.

• Efficiency: the 1st curriculum learning method that
does not require an extra forward propagation on all
data to determine the training set for the next step.

• Robustness: DIH changes smoothly comparing to
instantaneous feedback such as loss.

• Provable: we can formulate the problem of
optimizing a curriculum as an online optimization
of an unknown diminishing return (submodular)
function under mild assumptions, and derive the
near-optimality guarantee.

• Converge faster in early-stage: achieve
reasonably good performance in a shorter time.

• Higher final accuracy and better generalization:
avoid overfitting on memorable samples and focus
on forgettable samples.

• More efficient: we achieve 2-5x speedup
empirically. It can reduce communication costs for
ML over networks.

• Simple to implement: record byproduct of back-
propagation to update DIH.

Empirical advantages:

A free curriculum to train ML models:

Experiments for training Deep Neural Networks

Accuracy of
predicting top-10k
forgettable samples
in future epochs

Accuracy of
predicting top-10k
memorable samples
in future epochs

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Curriculum Learning with Dynamic Instance Hardness

rior probability of label yi given input xi for the i
th sample

under model w, which does not take the training dynamics
into account. More recently, a special case of DIH has been
studied in (Toneva et al., 2019), which computes the mean
of the prediction flips over all the steps after training has oc-
curred. They show that removing samples with the smallest
prediction flip mean from the training set leads to less degra-
dation of generalization performance than removing random
samples. Based on this observation, they propose to train
a small neural net beforehand to determine hard samples,
which are then used to train a large neural net. By contrast,
our study of DIH focuses on its dynamic properties during

training, which inspires a novel curriculum learning strategy
that can be applied to each step before training completes.

The training dynamics in this paper is also related to the
memorization studied in (Zhang et al., 2017), which consid-
ers overfitting on noisy data with random labels. We discuss
this in the appendix (see Figure 7) showing that noisy data
has distinctive training dynamics. Our observations also
suggest that learning simple patterns (Arpit et al., 2017) hap-
pens mainly amongst the easily memorable samples early
during training. Our problem is distinct from catastrophic
forgetting (Kirkpatrick et al., 2017), which considers se-
quential learning of multiple tasks, where later learned tasks
make the model forget what has been learned from earlier
tasks. In our work, we consider single task learning.

With additional mathematical assumptions (in our theoret-
ical discussion below), our work is loosely related to online
submodular function optimization. Specific forms have been
studied including maximization (Streeter & Golovin, 2009;
Chen & Krause, 2013), maximization in the bandit setting
with noisy feedback (Chen et al., 2017), and continuous
submodular function maximization (Chen et al., 2018b;a).

2 Dynamic Instance Hardness

Figure 1. Top: DIH (running mean of loss) vs. Bottom: instan-
taneous loss of 50 randomly selected samples from CIFAR10 on
WideResNet-28-10.
Let at(i) be a measure of instantaneous (i.e., at time t)
hardness of a sample (xi, yi) with feature xi and ground
truth label yi, where i is a sample index and t is training
iteration (typically, a count of mini-batches that so far have
been processed). We introduce three different notions of
instantaneous instance hardness in this work:

(A) Loss `(yi, F (xi;wt)), where `(·, ·) is the loss function
and F (·;w) is the model with parameters w;

(B) Loss change |`(yi, F (xi;wt)) � `(yi, F (xi;wt�1))|
between two consecutive time steps;

(C) Prediction flip |1[ŷti = yi] � 1[ŷt�1
i = yi]|, where

ŷ
t
i is the prediction of sample i in step t, e.g.,
argmaxj F (xi;wt)[j] for classification.

(A) corresponds closely to the “instance hardness” of Smith
et al. (2014). However, (B) and (C) require information
from previous time steps and aim to capture a form of mo-
mentum. Nevertheless, we consider (A), (B), and (C) all
to be variations of instantaneous instance hardness since
they use information from only a local time window around
iteration t. We define dynamic instance hardness (DIH) as a
running average over any instantaneous instance hardness,
computed recursively as follows:

rt+1(i) =

(
� ⇥ at(i) + (1� �)⇥ rt(i) if i 2 St

rt(i) else ,
(1)

where � 2 [0, 1] is a discount factor, St ✓ V , and V = [n]
is the set of all n training sample indices. St is the set of
samples used for training at time t, e.g., a subset selected
by some curriculum learning method (or a random batch in
some cases). In general, St should be large early in training,
but as rt(i) decreases for many samples, choosing a smaller
but wiser St will result in faster training and more accurate
models. The work of (Toneva et al., 2019) uses a special
case of DIH at t = T (T is the total number of training
steps) in Eq. (1) with � = 1/t+1, St = V , and at(i) being
the prediction flip in case (C).

When training DNNs, the instantaneous hardness measure
(e.g., the per-sample loss) is usually too noisy and unstable
(see Figure 1 in the appendix) to reflect the learning
progress of the model. DIH, on the other hand, is a simple
alternative descriptor of the training dynamics that averages
out the noise. In the following, we use DIH as a tool
to study the training dynamics of DNNs on individual
samples. We train a WideResNet of depth 28 and width
factor 10 on CIFAR10 dataset by random mini-batch
SGD, and apply a modified cosine annealing learning rate
schedule (Loshchilov & Hutter, 2017) for multiple episodes
of increasing length (300 epochs in total) and decaying
target learning rate. We contend that a cyclic learning rate
suits our study because: (1) it includes the most commonly
used monotone decreasing schedule since the learning rate
in each cycle is decreasing; (2) compared to a monotone
decreasing schedule, it can uncover the dynamic properties
of DIH in more scenarios such as increasing learning rates
and different learning rate decay speeds. In the study, we
compute DIH using two types of instantaneous instance
hardness, where at(i) is either loss or prediction flips (i.e.,

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Curriculum Learning with Dynamic Instance Hardness

rior probability of label yi given input xi for the i
th sample

under model w, which does not take the training dynamics
into account. More recently, a special case of DIH has been
studied in (Toneva et al., 2019), which computes the mean
of the prediction flips over all the steps after training has oc-
curred. They show that removing samples with the smallest
prediction flip mean from the training set leads to less degra-
dation of generalization performance than removing random
samples. Based on this observation, they propose to train
a small neural net beforehand to determine hard samples,
which are then used to train a large neural net. By contrast,
our study of DIH focuses on its dynamic properties during

training, which inspires a novel curriculum learning strategy
that can be applied to each step before training completes.

The training dynamics in this paper is also related to the
memorization studied in (Zhang et al., 2017), which consid-
ers overfitting on noisy data with random labels. We discuss
this in the appendix (see Figure 7) showing that noisy data
has distinctive training dynamics. Our observations also
suggest that learning simple patterns (Arpit et al., 2017) hap-
pens mainly amongst the easily memorable samples early
during training. Our problem is distinct from catastrophic
forgetting (Kirkpatrick et al., 2017), which considers se-
quential learning of multiple tasks, where later learned tasks
make the model forget what has been learned from earlier
tasks. In our work, we consider single task learning.

With additional mathematical assumptions (in our theoret-
ical discussion below), our work is loosely related to online
submodular function optimization. Specific forms have been
studied including maximization (Streeter & Golovin, 2009;
Chen & Krause, 2013), maximization in the bandit setting
with noisy feedback (Chen et al., 2017), and continuous
submodular function maximization (Chen et al., 2018b;a).

2 Dynamic Instance Hardness

Figure 1. Top: DIH (running mean of loss) vs. Bottom: instan-
taneous loss of 50 randomly selected samples from CIFAR10 on
WideResNet-28-10.
Let at(i) be a measure of instantaneous (i.e., at time t)
hardness of a sample (xi, yi) with feature xi and ground
truth label yi, where i is a sample index and t is training
iteration (typically, a count of mini-batches that so far have
been processed). We introduce three different notions of
instantaneous instance hardness in this work:

(A) Loss `(yi, F (xi;wt)), where `(·, ·) is the loss function
and F (·;w) is the model with parameters w;

(B) Loss change |`(yi, F (xi;wt)) � `(yi, F (xi;wt�1))|
between two consecutive time steps;

(C) Prediction flip |1[ŷti = yi] � 1[ŷt�1
i = yi]|, where

ŷ
t
i is the prediction of sample i in step t, e.g.,
argmaxj F (xi;wt)[j] for classification.

(A) corresponds closely to the “instance hardness” of Smith
et al. (2014). However, (B) and (C) require information
from previous time steps and aim to capture a form of mo-
mentum. Nevertheless, we consider (A), (B), and (C) all
to be variations of instantaneous instance hardness since
they use information from only a local time window around
iteration t. We define dynamic instance hardness (DIH) as a
running average over any instantaneous instance hardness,
computed recursively as follows:

rt+1(i) =

(
� ⇥ at(i) + (1� �)⇥ rt(i) if i 2 St

rt(i) else ,
(1)

where � 2 [0, 1] is a discount factor, St ✓ V , and V = [n]
is the set of all n training sample indices. St is the set of
samples used for training at time t, e.g., a subset selected
by some curriculum learning method (or a random batch in
some cases). In general, St should be large early in training,
but as rt(i) decreases for many samples, choosing a smaller
but wiser St will result in faster training and more accurate
models. The work of (Toneva et al., 2019) uses a special
case of DIH at t = T (T is the total number of training
steps) in Eq. (1) with � = 1/t+1, St = V , and at(i) being
the prediction flip in case (C).

When training DNNs, the instantaneous hardness measure
(e.g., the per-sample loss) is usually too noisy and unstable
(see Figure 1 in the appendix) to reflect the learning
progress of the model. DIH, on the other hand, is a simple
alternative descriptor of the training dynamics that averages
out the noise. In the following, we use DIH as a tool
to study the training dynamics of DNNs on individual
samples. We train a WideResNet of depth 28 and width
factor 10 on CIFAR10 dataset by random mini-batch
SGD, and apply a modified cosine annealing learning rate
schedule (Loshchilov & Hutter, 2017) for multiple episodes
of increasing length (300 epochs in total) and decaying
target learning rate. We contend that a cyclic learning rate
suits our study because: (1) it includes the most commonly
used monotone decreasing schedule since the learning rate
in each cycle is decreasing; (2) compared to a monotone
decreasing schedule, it can uncover the dynamic properties
of DIH in more scenarios such as increasing learning rates
and different learning rate decay speeds. In the study, we
compute DIH using two types of instantaneous instance
hardness, where at(i) is either loss or prediction flips (i.e.,

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Curriculum Learning with Dynamic Instance Hardness

for step t. However, this approximation cannot be applied
to instantaneous hardness measures since they can change
drastically between steps, as shown in Figure 1. By contrast,
as discussed in Section 2, it is safer to keep a stale DIH for
i /2 St�1 since DIH is smooth and hence more consistent
between steps and decreases during training.

We will revisit this formulation below where we will show
that although DIHCL uses a stale marginal gain to optimize
an approximation (Eq. 4) of the original problem (Eq. 2), it
achieves an approximation bound (as given in Corollary 1)
to the global optimal solution of Eq. (2), if one is allowed
to make further assumptions on f(·).

3.2 A “Free” Curriculum

We arrive at a curriculum learning strategy that selects hard
samples with larger DIH to train the model in each step.
Since we only update DIH for the selected samples by using
the byproduct of training, it reduces extra computation.

Algorithm 1 DIH Curriculum Learning (DIHCL-Greedy)
1: input: {(xi, yi)}ni=1, ⇡(·; ⌘), ⌘1:T , `(·, ·), F (·;w);

T, T0; �, �k 2 [0, 1]
2: initialize: w, ⌘1, k1 = n, r0(i) = 1 8i 2 [n]
3: for t 2 {1, · · · , T} do

4: if t  T0 then

5: St [n];
6: else

7: Let St = argmaxS:|S|=kt

P
i2S rt�1(i);

8: end if

9: Apply optimization ⇡(·; ⌘) to update model:

wt wt�1 + ⇡

rw

X

i2St

`(yi, F (xi;wt�1)); ⌘t

!

10: Compute normalized at(i) for i 2 St using Eq. (5);
11: Update DIH rt+1(i) using Eq. (1);
12: kt+1 �k ⇥ kt;
13: end for

We give a greedy version of DIHCL in Algorithm 1, where
{(xi, yi)}ni=1 is the training data, ⇡(·; ⌘) is an optimization
method such as SGD, ⌘1:T are the T learning rates, and �k is
the reduction factor for subset sizes kt. DIHCL trains using
more samples early on to produce an accurate initial estimate
of rt(i). This is indicated by T0, the number of warm start
epochs over the whole training set. After iteration T0, we
gradually reduce the number of samples from k1 = n to kt

thereby focusing on the most difficult samples as training
proceeds. At step t, we select subset St ✓ [n] with large
rt�1(i) and then update the model by training on St. We
then update rt(i) via Eq. (1).

Since the learning rate can change over different steps,
and large learning rates means greater model change, we

normalize at(i) by the learning rate ⌘t�1
1. Specifically,

we apply one of the following depending on which form
of at(i) we are using (case (A), (B), or (C) above):

(A) at(i) `(yi, F (xi;wt�1))/⌘t
(B) at(i)

|`(yi,F (xi;wt�1))�`(yi,F (xi;w⌧t(i)�1))|Pt
t0=⌧t(i)

⌘t0

(C) at(i)
|1[ŷt

i=yi]�1[ŷt�1
i =yi]|Pt

t0=⌧t(i)
⌘t0

(5)

The T0 warm start epochs and the schedule of decreasing kt

are necessary for early exploration since DIH is a running
mean over a sample’s dynamics and thus needs to revisit
each sample to estimate its relative DIH position. A simple
method to further reduce training time in early stages is to ex-
tract and use only a small and diverse subset of St. Inspired
by MCL (Zhou & Bilmes, 2018), after line 7, we reduce St

to a subset of size k
0
t = �k0kt (0 < �k0  1) by (approxi-

mately) solving the following submodular maximization.

max
S✓St,|S|k0

t

X

i2S

rt(i) + �tG(S) (6)

The function G : 2St ! R+ can be any submodular
function (Fujishige, 2005), and hence we can exploit
fast greedy algorithms (Nemhauser et al., 1978; Minoux,
1978; Mirzasoleiman et al., 2015) to solve Eq. (6) with an
approximation guarantee. We gradually reduce preference
for diversity as training proceeds by reduce �t by a factor
0  ��  1 at each step.

3.3 Approximation Bound under Assumptions

If in addition to the assumption that there exists a function
f : ZV

�0 ! R�0 such that rt(i) = f(i|S1:t�1), we also
assume that f(·) has a diminishing return (DR) property,
defined as: 80  x  y:

f(x+ ei)� f(x) � f(y + ei)� f(y), (7)

then an approximation bound of DIHCL is achievable. We
also assume f is normalized and monotone, i.e., f(0) = 0
and f(x)  f(y), 8 0  x  y, and the max singleton
gain is bounded by 1 (maxi f(ei)  1) w.l.o.g. With the
above set of assumptions, rt(i) is monotonically decreasing
with increasing t, which is consistent with our empirical
observations in Figure 3. However, rt(i) monotonically
decreasing is a necessary, but not sufficient, condition for
the DR property on f to hold, so it does not guarantee the
DR property. Nevertheless, if it is the case that rt(i) is
produced as above from some DR function f , it enables an
interesting theoretical analysis.

Under the above assumptions, we may derive bounds of
DIHCL-Greedy(Alg. 1) when kt = k 8t 2 [T]. For simplic-

1We use ⌘t�1 instead of ⌘t because at(i) is computed based
on wt�1 before the weight update in step t.

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Curriculum Learning with Dynamic Instance Hardness

Table 1. The test accuracy (%) achieved by different methods training DNNs on 11 datasets (without pre-training). We use “Loss, dLoss,
Flip” to denote the 3 choices of DIH metrics based on (A), (B), and (C) respectively. In all DIHCL variants, we apply lazier-than-lazy-
greedy (Mirzasoleiman et al., 2015) for Eq. (6) on all datasets except Food-101, Birdsnap, Aircraft (FGVC Aircraft), Cars (Stanford Cars),
and ImageNet. For each dataset, the best accuracy is in blue, the second best is red, and third best green.

Curriculum CIFAR10 CIFAR100 Food-101 ImageNet STL10 SVHN KMNIST FMNIST Birdsnap Aircraft Cars

Rand mini-batch 96.18 79.64 83.56 75.04 86.06 96.48 98.67 95.22 64.23 74.71 78.73
SPL 93.55 80.25 81.36 73.23 81.33 96.15 97.24 92.09 63.26 68.95 77.61
MCL 96.60 80.99 84.18 75.09 88.57 96.93 99.09 95.07 65.76 75.28 76.98

DIHCL-Rand, Loss 96.76 80.77 83.82 75.41 87.25 96.81 99.10 95.69 65.62 79.00 80.91
DIHCL-Rand, dLoss 96.73 80.65 83.82 75.34 86.93 96.83 99.14 95.64 65.25 79.93 78.70
DIHCL-Exp, Loss 97.03 82.23 84.65 75.10 88.36 96.91 99.20 95.45 66.13 77.68 79.85
DIHCL-Exp, dLoss 96.40 81.42 84.75 75.62 89.41 96.80 99.18 95.50 66.59 79.72 81.48
DIHCL-Beta, Flip 96.51 81.06 84.94 76.33 86.88 97.18 99.05 95.66 65.48 78.49 80.13

ity, assume n mod k = 0 and let m , n/k. We first show a
bound on function g, and then connect it to the unknown f .
Theorem 1. For f : ZV

�0 ! R�0 on ground set V satisfy-
ing the DR property, compared to any solution S

⇤
1:T , S1:T ,

the solution of DIHCL-Greedy, achieves

g(S1:T) + cf,m � max

⇢
1� e

�1

k
,
k

2n

�
g(S⇤

1:T), (8)

Where cf,m , mminA1:m g(A1:m) such that
Sm

i=1 Ai =
V, and |Ai| = k.

Corollary 1. With the assumptions in Theorem 1, we have
f(S1:T) +

1
k cf,m �

1
k max

n
1�e�1

k ,
k
2n

o
f(S⇤

1:T).

The proofs are in the appendix. The cf,m term in the bound
reflects our loss during the warm start phase, where we can-
not estimate the gain of each sample unless we select each
sample at least once, which is independent of T and vanishes
in the long run. The 1� e

�1 comes from the DR property
and our greedy procedure. For the 1/k factor and the k/n

factor of the bound on g, we give hard cases in the appendix
so our bound is tight to constant factors. These factors result
from our assumption about the function f , which may allow
arbitrary interactions among data points. In practice, similar
data points tend to have similar DIH, and we can incorporate
such information by adding an additional submodular term
G to the DIH value to model data point interactions.

3.4 Practical DIHCL using DIH-weighted Sampling

In line 7 of Alg. 1, we select St with the highest rt�1(i) val-
ues. In practice, we find adding randomness to the selection
procedure gives better performance as (1) exploration on
samples with small rt(i) is necessary for accurate estimate
to rt(i), and (2) randomness of training samples is essential
to achieve a good quality solution w for non-convex models
such as DNNs. Instead of choosing greedily and deter-
ministically the top kt samples, we perform a randomized
greedy procedure by random sampling with probability
pt,i / h(rt�1(i)), where h(·) is a monotone non-decreasing

function. Hence, we still prefer data points with high
DIH. An ideal choice of h(·) should balance between
the exploration (under poorly estimated DIH values) and
exploitation (when DIH is well estimated). We propose the
following three sampling methods to replace line 7 of Alg. 1,
and give extensive evaluations in the experimental section.

DIHCL-Rand: Let h(rt(i)) = rt(i). We sample data
points with probability proportional to their DIH values.

DIHCL-Exp: We trade-off exploration and exploitation
similarly to Exp3 (Auer et al., 2003), which samples based
on the softmax value. We then reweigh the observation by
the selection probability to encourage exploration:

h(rt(i)) = exp
hp

2 logn/n⇥ rt(i)
i
,

at(i) at(i)/pt,i 8i 2 St.
(9)

DIHCL-Beta: We utilize the idea of Thompson
sampling (Thompson, 1933) and use a Beta prior dis-
tribution to balance exploration and exploitation, i.e.,
h(rt(i)) ⇠ Beta(rt(i), c � rt(i)), where c is a sufficiently
large constant with c � rt(i), e.g., c = 1 when at(i) is pre-
diction flip. The Beta distribution encourages exploration
when the difference between rt(i) and c� rt(i) is small.

4 Empirical Experimental Evaluation

We train different DNNs by using variants of DIHCL,
and compare them with three baselines, vanilla random
mini-batch SGD, self-paced learning (SPL) (Kumar et al.,
2010), and minimax curriculum learning (MCL) (Zhou &
Bilmes, 2018) on 11 image classification datasets (without
pre-training), i.e., (A) WideResNet-28-10 (Zagoruyko &
Komodakis, 2016) on CIFAR10 and CIFAR100 (Krizhevsky
& Hinton, 2009); (B) ResNeXt50-32x4d (Xie et al., 2017)
on Food-101 (Bossard et al., 2014), FGVC Aircraft
(Aircraft) (Maji et al., 2013), Stanford Cars (Krause et al.,
2013), and Birdsnap (Berg et al., 2014); (C) ResNet50 (He
et al., 2016) on ImageNet (Deng et al., 2009); (D)

WideResNet-16-8 on Fashion-MNIST (FMNIST) (Xiao
et al., 2017) and Kuzushiji-MNIST (KMNIST) (Clanuwat

Curriculum Learning with Dynamic Instance
Hardness & Neural Networks Memorization

TIANYIZH@UW.EDU

