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Experiments for training Deep Neural Networks
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7 \,\\Epoﬁm 0 - pm&“mp) and ImageNet. For each dataset, the best accuracy is in blue, the second best 1s red, and third best green.
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Observation IT: DIH in early epochs suffices to identify the easy (to
remember) vs. the hard (to remember) samples.
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 LEFT: We compute the overlap between the top-10k group with the largest r at epoch i and j for every i and every j > i. _
* RIGHT: We compute the overlap between the top-10k group with the smallest r at epoch i and j for every i and every j > i.
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