

<u>IOverview</u>

Auto-Summarization: A Step Towards Unsupervised Learning of a Submodular Mixture Chandrashekhar Lavania and Jeff Bilmes

MELODI Lab @ University Of Washington, Seattle

Lavania, C. and Bilmes, J. Auto-summarization: A step towards unsupervised learning of a submodular mixture. SDM 2019.

- Massive amounts of data is generated daily via a plethora of sources. (eg: videos, different types sensors, text sources etc.).
- Processing of this data is resource intensive.
- Summarization can help extract essential information from the data.
- Lack of "training summaries prevents supervised learning of summarization objective.
- Unsupervised approaches are thus needed.

- Learn a submodular mixture $F_w(\cdot) = \sum_j w_i f_i(\cdot)$ using minimal hyperparameters and without the incorporation of ground truth information in the learning objective.
- \bullet Each $f_i(\cdot)$ is submodular and $||w|| = 1$.
- The mixture is learned using objective $J(w) = \sum_i \lambda_i J_i(w)$ as:

Submodular functions for Summarization

- Given $V = \{v_1, v_2, \ldots, v_n\}$. Then $f: 2^V \to \mathbb{R}$ is *submodular* if $f(a|A) \ge f(a|B) \ \forall A \subseteq B \subseteq V, \ a \in V \setminus B$, where $f(a|A) \triangleq f(a \cup A) - f(A)$.
- . They have shown merit in a variety of summarization and data selection tasks.
- Batch summarization is often: $S^* \in \text{argmax}_{S \in \mathcal{C}} f(S)$. Data for Summarization

Rich and resource efficient class of submodular functions feature weight), φ*^u* is monotone non-decreasing concave function, and $m_u: V \to \mathbb{R}_+$ is a non-negative normalized

-
- Defined in the form $F_w(A) = \sum_{u \in U} w_u \phi_u(m_u(A))$.
- *U* is a set of features, $w \in \mathbb{R}^U_+$ (for $u \in U$, $w_u \ge 0$ is a modular function specific to feature *u*.
- They have been successfully used in a variety of summarization tasks.

Aim

max *w*≥0,||*w*||=1 *J*(*w*)

Feature Based Submodular Functions

Figure 1: Sample architecture for constructing AC image features. The zoomed view shows that the first layer after the bottleneck is pos deconv. A pos deconv layer's weight matrices are non-negatively constrained during training.

Additively Contributive Features (AC)

- Let $e(X_v) = \{e(X_v)(1), e(X_v)(2) \dots e(v)(d)\}$ be the *d* dimensional representation of an object *x^v* in feature space U where $v \in V$ is an index of a data item.
- Given samples x_{v_1} and x_{v_2} , if for any $u \in U$, $\varepsilon(X_{V_1})(u) < \varepsilon(X_{V_2})(u)$ implies that object X_{V_2} has more of the property represented by feature *u* as compared to x_{v_1} , then the representation is AC.
- Moreover, for two or more objects indexed by $A \subseteq V$, then the objects should contribute to property *u* additively, as in \sum *a*∈*A* $e(a)(u)$.

Autoencoders for AC Feature Generation

- The encoding-decoding process for item *x* can be considered as $\mathfrak{d}(e(x))$.
- Let $W \in \mathbb{R}^{d' \times d}$ such that $\mathfrak{d}(\mathfrak{e}(x)) = \mathfrak{d}'$
- Restrict *W* to be non-negative during the training process.

(*W*e(*x*)).

Meta-Objectives

- Confidence
-
- Non-modularity
-
- Stability

Reference: