

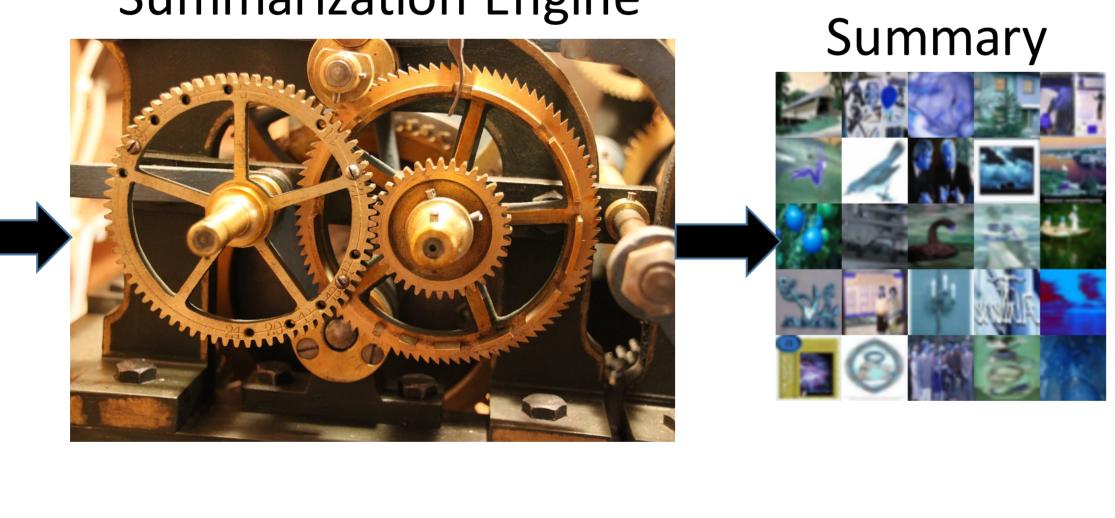
Overview

- Massive amounts of data is generated daily via a plethora of sources. (eg: videos, different types sensors, text sources etc.).
- Processing of this data is resource intensive.
- Summarization can help extract essential information from the data.
- Lack of "training summaries prevents supervised learning of summarization objective.
- Unsupervised approaches are thus needed.

Submodular functions for Summarization

- Given $V = \{v_1, v_2, \ldots, v_n\}$. Then $f : 2^V \rightarrow \mathbb{R}$ is submodular if $f(a|A) \ge f(a|B) \quad \forall A \subseteq B \subseteq V, \ a \in V \setminus B$, where $f(a|A) \triangleq f(a \cup A) - f(A)$.
- They have shown merit in a variety of summarization and data selection tasks.
- Batch summarization is often: $S^* \in \operatorname{argmax}_{S \in C} f(S)$. Data for Summarization

Summarization Engine



Aim

- Learn a submodular mixture $F_w(\cdot) = \sum_i w_i f_i(\cdot)$ using minimal hyperparameters and without the incorporation of ground truth information in the learning objective.
- Each $f_i(\cdot)$ is submodular and ||w|| = 1.
- The mixture is learned using objective $J(w) = \sum_{l} \lambda_{l} J_{l}(w)$ as:

 $\max_{w \ge 0, ||w||=1} J(w)$

Auto-Summarization: A Step Towards Unsupervised Learning of a Submodular Mixture Chandrashekhar Lavania and Jeff Bilmes

MELODI Lab @ University Of Washington, Seattle

Feature Based Submodular Functions

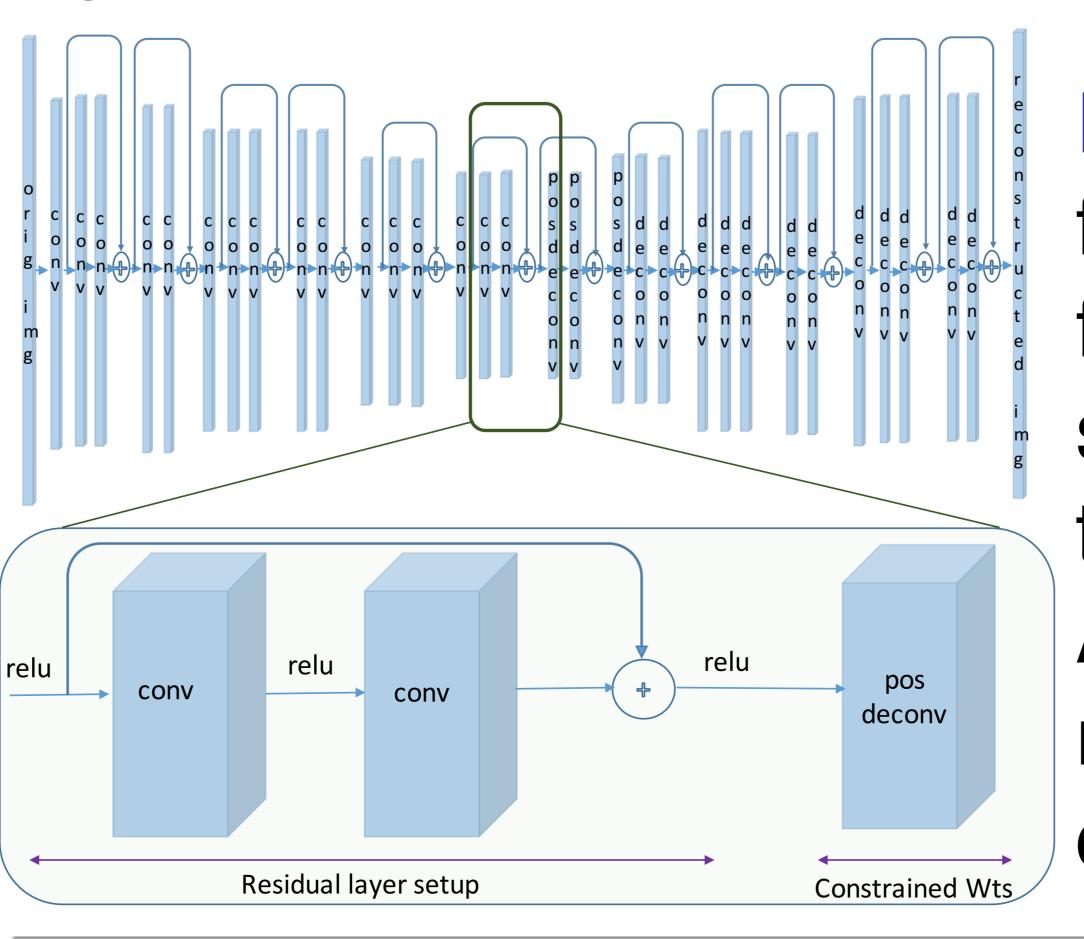
- Defined in the form $F_w(A) = \sum_{u \in U} w_u \phi_u(m_u(A))$.
- U is a set of features, $w \in \mathbb{R}^U_+$ (for $u \in U$, $w_u \ge 0$ is a modular function specific to feature *u*.
- They have been successfully used in a variety of summarization tasks.

Additively Contributive Features (AC)

- Let $e(x_v) = \{e(x_v)(1), e(x_v)(2) \dots e(v)(d)\}$ be the d dimensional representation of an object x_v in feature space U where $v \in V$ is an index of a data item .
- Given samples x_{v_1} and x_{v_2} , if for any $u \in U$, $\mathfrak{e}(x_{v_1})(u) < \mathfrak{e}(x_{v_2})(u)$ implies that object x_{v_2} has more of the property represented by feature *u* as compared to x_{v_1} , then the representation is AC.
- Moreover, for two or more objects indexed by $A \subseteq V$, then the objects should contribute to property u additively, as in $\sum_{a \in A} e(a)(u)$.

Autoencoders for AC Feature Generation

- The encoding-decoding process for item x can be considered as $\mathfrak{d}(\mathfrak{e}(x))$.
- Let $W \in \mathbb{R}^{d' \times d}$ such that $\mathfrak{d}(\mathfrak{e}(x)) = \mathfrak{d}'(W\mathfrak{e}(x))$.
- Restrict W to be non-negative during the training process.

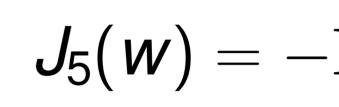


 Rich and resource efficient class of submodular functions feature weight), ϕ_u is monotone non-decreasing concave function, and $m_u : V \to \mathbb{R}_+$ is a non-negative normalized

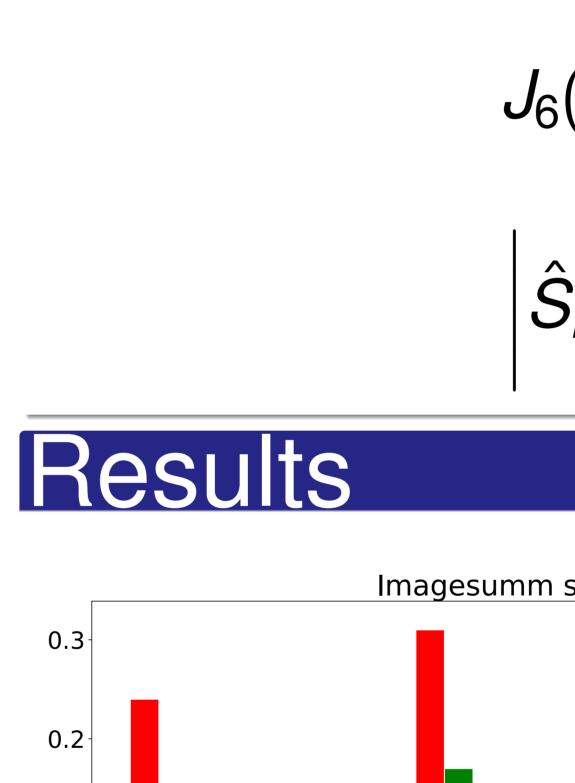
Figure 1: Sample architecture for constructing AC image features. The zoomed view shows that the first layer after the bottleneck is pos deconv. A pos deconv layer's weight matrices are non-negatively constrained during training.

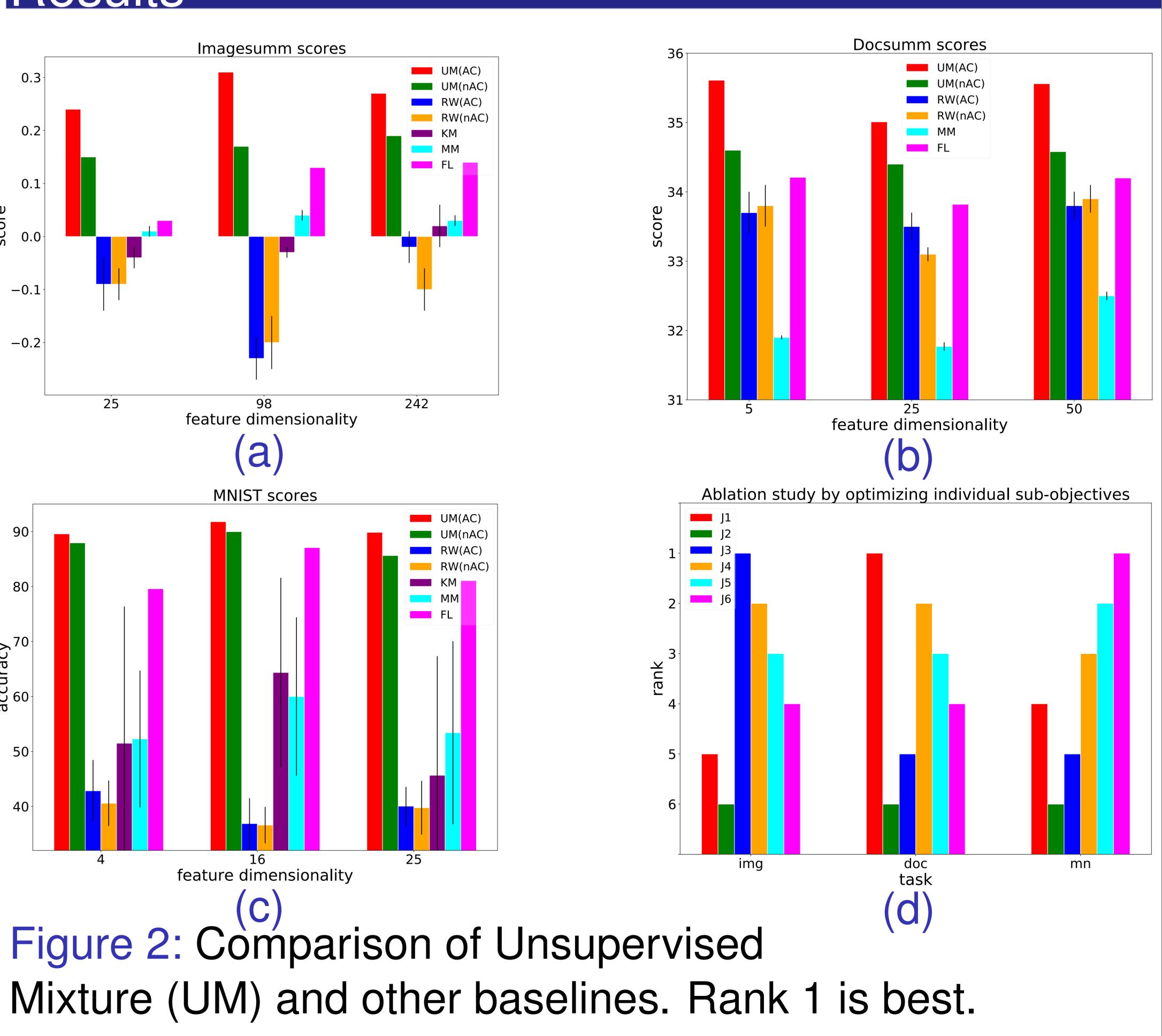
Meta-Objectives

- Confidence $J_1(W)$
- Entropy
- Non-modulari $J_3(w) = \mathbb{E}$
- Curvature
- Stability

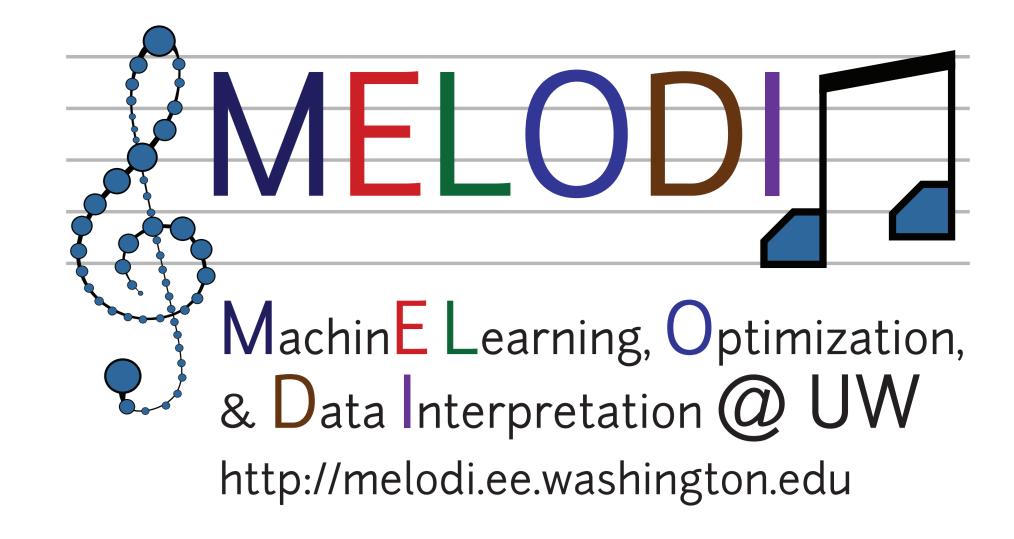


Soft De-duplic





Reference: _avania, C. and Bilmes, J. Auto-summarization: A step towards unsupervised learning of a submodular mixture. SDM 2019.



$$= \mathbb{E}_{k \sim p} \left[\left| \max_{S \subseteq V, |S| = k} F_w(S) - \min_{S' \subseteq V, |S'| \ge k} F_w(S') \right| \right]$$

$$J_2(w) = -\sum_{u, \gamma} w_{u, \gamma} log(w_{u, \gamma})$$
ity
$$L_{k \sim p} \left[\sum_{s \in \hat{S}} F_w(s) - F_w(\hat{S}) \middle| \hat{S} \in \arg\max_{S \subseteq V; |S| \le k} F_w(S) \right]$$

$$J_4(w) = 1 - \min_{j \in V} \frac{F_w(j | V \setminus j)}{F_w(j)}$$

$$\mathbb{E}_{p_w} \left[\mathbb{E}_{k \sim p} \left[\max_{S \subseteq V, |S| = k} F_w(S) - \max_{S' \subseteq V, |S'| = k} F_{\hat{w}}(S') \right]^2 \right]$$
ication before saturation
$$(w) = \mathbb{E}_{k \sim p} \left[\sum_{i=1}^k \left(1 - \frac{F_w(\hat{S}_i)}{F_w(V)} \right) \frac{F_w(v_i | \hat{S}_{i-1})}{\psi(v_i, \hat{S}_{i-1})} \right]$$

$$\hat{S}_i \in \operatorname{gargmax}_{S \subseteq V, |S| = i} F_w(S), v_i \in \hat{S}_i \setminus \hat{S}_{i-1} \right]$$