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Overview
Massive amounts of data is generated daily via a
plethora of sources. (eg: videos, different types sensors,
text sources etc.).
Processing of this data is resource intensive.
Summarization can help extract essential information
from the data.
Lack of “training summaries prevents supervised learning
of summarization objective.
Unsupervised approaches are thus needed.

Submodular functions for Summarization
Given V = {v1, v2, . . . , vn}. Then f : 2V → R is
submodular if f (a|A) ≥ f (a|B) ∀A ⊆ B ⊆ V , a ∈ V \ B,
where f (a|A) , f (a ∪ A)− f (A).
They have shown merit in a variety of summarization and
data selection tasks.
Batch summarization is often: S∗ ∈ argmaxS∈C f (S).
Data$for$Summarization

Summarization$Engine
Summary

Aim
Learn a submodular mixture Fw(·) =

∑
i wifi(·) using

minimal hyperparameters and without the incorporation
of ground truth information in the learning objective.
Each fi(·) is submodular and ||w || = 1.
The mixture is learned using objective J(w) =

∑
l λlJl(w)

as:
max

w≥0,||w ||=1
J(w)

Feature Based Submodular Functions
Rich and resource efficient class of submodular functions
Defined in the form Fw(A) =

∑
u∈U wuφu(mu(A)).

U is a set of features, w ∈ RU
+ (for u ∈ U, wu ≥ 0 is a

feature weight), φu is monotone non-decreasing concave
function, and mu : V → R+ is a non-negative normalized
modular function specific to feature u.
They have been successfully used in a variety of
summarization tasks.

Additively Contributive Features (AC)
Let e(xv) = {e(xv)(1), e(xv)(2) . . . e(v)(d)} be the d
dimensional representation of an object xv in feature
space U where v ∈ V is an index of a data item .
Given samples xv1 and xv2, if for any u ∈ U,
e(xv1)(u) < e(xv2)(u) implies that object xv2 has more of
the property represented by feature u as compared to
xv1, then the representation is AC.
Moreover, for two or more objects indexed by A ⊆ V ,
then the objects should contribute to property u
additively, as in

∑
a∈A e(a)(u).

Autoencoders for AC Feature Generation
The encoding-decoding process for item x can be
considered as d(e(x)).
Let W ∈ Rd ′×d such that d(e(x)) = d

′
(W e(x)).

Restrict W to be non-negative during the training
process.
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Figure 1: Sample architecture
for constructing AC image
features. The zoomed view
shows that the first layer after
the bottleneck is pos deconv.
A pos deconv layer’s weight
matrices are non-negatively
constrained during training.

Meta-Objectives
Confidence

J1(w) = Ek∼p

[∣∣∣∣ max
S⊆V ,|S|=k

Fw(S)− min
S′⊆V ,|S′|≥k

Fw(S
′
)

∣∣∣∣]
Entropy J2(w) = −

∑
u,γ

wu,γlog(wu,γ)

Non-modularity
J3(w) = Ek∼p

[∑
s∈Ŝ

Fw(s) − Fw(Ŝ)

∣∣∣∣Ŝ ∈ arg max
S⊆V :|S|≤k

Fw(S)

]
Curvature J4(w) = 1−min

j∈V

Fw(j |V \ j)
Fw(j)

Stability

J5(w) = −Epw

[
Ek∼p

[
max

S⊆V ,|S|=k
Fw(S) − max

S′⊆V ,|S′|=k
Fŵ(S

′
)

]2
]

Soft De-duplication before saturation

J6(w) = Ek∼p

[
k∑

i=1

(
1− Fw(Ŝi)

Fw(V )

)
Fw(vi|Ŝi−1)

ψ(vi, Ŝi−1)∣∣∣∣Ŝi ∈ gargmaxS⊆V ,|S|=iFw(S), vi ∈ Ŝi \ Ŝi−1

]
Results
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Figure 2: Comparison of Unsupervised
Mixture (UM) and other baselines. Rank 1 is best.
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