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Gradient-based learning proves to be an effective model for evaluating multi-agent learning 

dynamics found in games, reinforcement learning, etc. We utilize this framework to study how 

noises in an individual player propagates to other players through coupled learning 

algorithms. With a thorough understanding of the mechanism by which noises propagate within in 

a network of players, we can better design games and cost functions that maximizes robustness of 

the overall learning dynamics to destabilizing adversarial noises.  

Top: A four player tug-of-war modelled as an LQ 

game. A target x is controlled by players with 

different control coordinates. Each pulls x towards a 

preset target in a finite time horizon. 

Left: resulting trajectory of a four player tug-of-war 

game, preset player targets are given by triangles. 

Two trajectories are shown, the purple trajectory is a 

Nash equilibrium while the brown trajectory is with 

random player controls. 

Problem Statement

Quadratic Continuous Games Disturbance Decoupling Networks

Adversarial Gradient Noise Disturbance Decoupling in LQ Games

In an N player quadratic continuous game (f1, … fN), where for each player i, fi is its 

cost function and Xi is its action space, each player attempts to minimize its individual 

cost function fi given the action of all other players. 

For such games, a stable outcome is a Nash equilibrium. Informally, a joint action is 

a Nash equilibrium when no player can improve their individual cost by adjusting 

their action. If this property only holds in a neighbourhood of x, it is a local Nash 

equilibrium. 

Ex 1) Finite time horizon LQ games

We consider a class of gradient-based learning techniques, where each player 

myopically updates its own action based on its current gradient.

Ex 2) MARL Policy Evaluation

Assume an additive noise gi corrupts the original gradient of player i. When we do not 

assume bounds or dynamics on the noise, such that it is arbitrary, the stability of the 

overall learning dynamics cannot be guaranteed.  However, we show that in certain 

game graph structures, a subset of players’ action updates remain completely 

unaffected by the disturbance. I.e., their learned action trajectories remain identical 

with and without gradient noise. 

Game graph: we define a directed graph where 

the set of nodes correspond to the set of player 

actions, and the edges between each player 

exist if the gradient Dij fj is non-zero. 

We define a path of length k on a game graph 

as a sequence of k+1 nodes connected k edges. 

Its path weight is given by the product of its 

edge weights

Theorem: Given a quadratic game (f1, … fN), where player i receives noisy gradient, player j is 

decoupled from player i’s noisy gradient if and only if the path weights of length k satisfy

We consider this condition for player 1 and player 4 on the 

game graph given on the right, where each player has a 

scalar strategy and inter-player edges has weights as 

labelled. Each self loop has weight wi. 

To satisfy Theorem 1, all sums of path weights must be zero 

for paths of lengths k  = 0, 1, 2, 3.  Since there are no paths 

of length zero or one,  k = {0, 1} are automatically satisfied. 

For k = 2, we generate the condition 

For k = 3, we generate the condition 

The tug-of-war LQ game as described in 

center right has game graph given by right 

top, where the weights satisfy disturbance 

decoupling. We simulate such this game with 

random initial conditions and random 

gradient noise in player one and plot the 

results as shown on the right. Top: we plot the 

cost of each player when player one’s 

gradient is noise corrupted. Although player 

4’s action is disturbance decoupled from 

player 1. We note here that its cost is not. 

Bottom: we plot the error between individual 

player action from optimal action as a 

function of increasing noise magnitude. While 

player 1’s action diverges as the noise 

increases, we note that player 4’s action is 

completely unaffected.  


