

Monocular Visual Object 3D Localization in Road Scenes

Problems to Address:

- Accurately and robustly 3D localize objects corresponding to camera.
- Only use a monocular camera setup on an autonomous vehicle.

Challenges:

Obtaining 3D information is ill-posed for monocular cameras.

Adaptive Ground Plane Estimation

- Objects are usually occluded in the autonomous driving view.
- Lack of general 3D localization methods which is applicable for different kinds of objects, e.g., cars, pedestrians, cyclists, etc.

Contributions:

- A accurate and robust monocular object 3D localization framework.
- Generalized: Applicable for common moving objects in road scenes.
- Competitive: Input depthmap can be replaced by other equivalent depth sensors, e.g., LiDAR, depth camera and RADAR.

PROPOSED SYSTEM

- Dense Features: 3D points from semantic segmentation [4].
- Sparse Ground Features: Object 3D bottom-center points.
- Augmented RANSAC to jointly consider the contributions from dense and sparse ground features.

Object Tracklet Smoothing

- Multi-object tracking [5] to obtain association among bounding boxes.
- Generate object 3D trajectories.
- Moving split the trajectories into short tracklets and apply weighted Huber regression to each tracklet.

EXPERIMENTS

Object Depth Initialization:

• Depth estimation + instance segmentation + depth histogram analysis.

Adaptive ground plane estimation:

Sparse & dense ground features + augmented RANSAC.

Object tracklet smoothing:

Multi-object tracking + moving split + weighted Huber regression.

Object Depth Initialization

(b) 3D point cloud on different surfaces

Visible Surfaces Vehicle Location **Reference Points**

Table 1: Mean localization error (standard deviation) for pedestrians compared with some vehicle localization methods.

Methods	Overall (m)	$\leq 15m$	$\leq 30m$	> 30m	Running speed
Murthy et al. [27]	2.61 (±2.23)	1.59 (±0.96)	2.52 (±2.16)	4.30 (±2.83)	_
Ansari et al. [2]	$1.00(\pm 0.77)$	$0.67 (\pm 0.50)$	$0.94 (\pm 0.69)$	$2.19(\pm 1.18)$	-
Ansari et al. (Opt) [2]	$0.86 (\pm 0.87)$	$0.55 (\pm 0.50)$	0.79 (±0.79)	2.16 (±1.18)	_
Ours (DHist)	0.79 (±0.75)	0.43 (±0.31)	0.76 (±0.73)	2.78 (±2.01)	6.1 FPS
Ours (DHist+AGPE)	$0.74 (\pm 0.64)$	$0.43 (\pm 0.31)$	$0.71 (\pm 0.63)$	$2.39 (\pm 1.61)$	3.3 FPS
Ours (DHist+TS)	$0.73 (\pm 0.62)$	0.40 (±0.30)	$0.71 (\pm 0.61)$	2.15 (±1.32)	2.6 FPS
Ours (DHist+AGPE+TS)	0.69 (±0.51)	$0.42 (\pm 0.33)$	$0.68 (\pm 0.53)$	$1.22 (\pm 0.74)$	2.0 FPS

Table 2: Vehicle 3D localization results based on qualified Table 3: Mean ground normal error for different ground vehicle surface detection on KITTI Sequence 0009. plane estimation methods.

Methods	Mean localization error (m)	
Depth histogram	1.19 (±0.90)	
3D point cloud	$0.83 (\pm 0.73)$	

Methods	Ground normal error (deg)
HMM [6]	4.10
GroundNet [20]	0.96

(c) Schematic diagram for 3D point cloud geometry

- (d) Bad depthmap caused by occlusion
- Monocular depth estimation [1] to get a dense depthmap.
- Use Mask R-CNN [2] to get object masks.
- Object depth proposal bins in depth histogram \mathcal{H} : $d_{obj} = \frac{1}{|PB|} \sum_{d_i \in PB} d_i$. Object depth confidence: **OR OR** OR
- Separate point cloud into two surfaces by SLIC [3].
- Calculate vehicle depth: $d_{\nu} = d_1 + (d_2 d_3)$.

Ours (DGPE)	0.79
Ours (SGPE)	0.89
Ours (AGPE)	0.74

REFERENCES

[1] Godard, Clément, et al. "Unsupervised monocular depth estimation with left-right consistency." CVPR. 2017. [2] He, Kaiming, et al. "Mask r-cnn." *Proceedings of the IEEE* international conference on computer vision. 2017. [3] Achanta, Radhakrishna, et al. "SLIC superpixels compared to state-of-the-art superpixel methods." TPAMI. 2012. [4] Chen, Liang-Chieh, et al. "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs." TPAMI. 2017.

Project Website

[5] Wang, Gaoang, et al. "Exploit the connectivity: Multi-object tracking with trackletnet." ACM Multimedia, 2019.