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Adaptive Ground Plane Estimation

INTRODUCTION

Problems to Address:

* Accurately and robustly 3D localize objects corresponding to camera.
* Only use a monocular camera setup on an autonomous vehicle.

Challenges:

* Obtaining 3D information is ill-posed for monocular cameras.

* Objects are usually occluded in the autonomous driving view.

» Lack of general 3D localization methods which is applicable for ‘
different kinds of objects, e.g., cars, pedestrians, cyclists, etc. .

Contributions: .

* A accurate and robust monocular object 3D localization framework.

* Generalized: Applicable for common moving objects in road scenes.

« Competitive: Input depthmap can be replaced by other equivalent
depth sensors, e.g., LIDAR, depth camera and RADAR.

PROPOSED SYSTEM
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Dense Features: 3D points from semantic segmentation [4].
Sparse Ground Features: Object 3D bottom-center points.

Augmented RANSAC to jointly consider the contributions from dense
and sparse ground features.

Object Tracklet Smoothing
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» Multi-object tracking [5] to obtain
association among bounding boxes.

* Generate object 3D trajectories.

* Moving split the trajectories into short
tracklets and apply weighted Huber
regression to each tracklet.
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. MUIti-ObjeCt traCking n mOVing Spllt + Welghted Huber regreSSion. Table 1: Mean localiz:jltion error (s.tandard c.levi.ation) for pedestrians
compared with some vehicle localization methods.
Ob'leCt Depth In Itlal |Zat|on Methods Overall (m) < 15m < 30m > 30m Running speed
Murthy et al. [27] 261 (£2.23) 159 (£0.96)  2.52(+2.16)  4.30 (+2.83) _
- Ansari et al. [2] 1.00 (£0.77)  0.67 (£0.50)  0.94 (+0.69)  2.19 (+1.18) -
Ansari et al. (Opt) [2] 0.86 (£0.87)  0.55(+£0.50)  0.79 (+0.79)  2.16 (+1.18) -
DDDDDDDD Ours (DHist) 0.79 (£0.75)  0.43(+£0.31)  0.76 (+0.73)  2.78 (+2.01) 6.1 FPS
(@) Good object depthmap Ours (DHist+AGPE) 0.74 (+0.64) 0.43 (+0.31) 0.71 (£0.63) 2.39 (+1.61) 3.3 FPS
Ours (DHist+TS) 0.73 (£0.62)  0.40 (£0.30)  0.71 (x0.61)  2.15 (+1.32) 2.6 FPS
Ours (DHist+AGPE+TS)  0.69 (+0.51)  0.42(£0.33)  0.68 (+0.53)  1.22 (+0.74) 2.0 FPS

(b) 3D point cloud on
different surfaces

person (a) Vehicle Image

Table 2: Vehicle 3D localization results based on qualified Table 3: Mean ground normal error for different ground

o 1 Visible Surfaces vehicle surface detection on KITTI Sequence 0009. plane estimation methods.
(b) Bad depthmap caused by illumination Camera
| ﬁ Orientation @  Venhicle Location
@  ReferencePoints Methods Mean localization error (m) Methods Ground normal error (deg)
., Depth histogram 1.19 (£0.90) HMM [6] 4.10
dlv ___________________________ 3D point cloud 0.83 (£0.73) GroundNet [20] 0.96
——— i — Ours (DGPE) 0.79
(c) Bad depthmap caused by resolution ’ Ours (SGPE) 0.89
[ E=SPPRNIA " § “ Ours (AGPE) 0.74
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(c) Schematic diagram for 3D point cloud geometry R E F E RE N C E S
| [1] Godard, Clément, et al. "Unsupervised monocular depth
(d) Bad depthmap caused by occlusion t t th | ft _ ht _ t | CVPR 201 7 )
. . - estimation wi ert-rignt consistency. . . ] _
* Monocular depth estimation [1] to get a dense depthmap. Project Website

[2] He, Kaiming, et al. "Mask r-cnn." Proceedings of the IEEE
international conference on computer vision. 2017.

[3] Achanta, Radhakrishna, et al. "SLIC superpixels compared

+ Use Mask R-CNN [2] to get object masks.
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. ObJ.eCt depth — pr(?p033| bins in depth histogram 77. d,p, | PB| dz ay. to state-of-the-art superpixel methods." TPAMI. 2012.
* Object depth confidence: cop = |1 - o)\ |PB | 1 €55 [4] Chen, Liang-Chieh, et al. "Deeplab: Semantic image
OR o U |H segmentation with deep convolutional nets, atrous

convolution, and fully connected crfs." TPAMI. 2017 .

[5] Wang, Gaoang, et al. "Exploit the connectivity: Multi-object /
tracking with trackletnet." ACM Multimedia, 2019.

« Separate point cloud into two surfaces by SLIC [3].
» Calculate vehicle depth: d, =d; + (dy — d3).




