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 Problem: Stochastic gradient methods require random access to data points which can be costly, Pata Points e -
especially for resource limited devices such as mobile devices and computing at the edge. Also, the B --- --- N [l
randomly sampled mini-batches may contain redundant information. nEn N e AR fors,ze: NG fjc,,\ NG — .
 Approach: We propose a general and efficient hierarchical robust partitioning framework to mm o Level Partiion
generate a deterministic sequence of mini-batches, one that offers assurances of being high quality,
unlike a randomly drawn sequence. Hlerarchlcal Partition
 EXxperiments: We test our fixed sequences to train neural networks on CIFAR-100 and Imagenet "N ] m
datasets and achieve significantly improved performance compared to randomly sampled sequences. 1 1
Ml B B [ (.
 Robust Submodular Partition with Cardinality Constraint: max min f(m;(V)). Algorithm 1: Cardinality Constrained Submodular
mell(V,k) 1=1:m Robust Partition (RobustPartitionK(f, V, k))
Where f is a submodular function, I1(V, k) is all partitions of ground set V with size k. The max- input : f,V, k
min formulation enforces the worst mini-batch to be representative of V. 1mi=|VI[/kR:=V Let Ay = Ay = ... = Ay =
« Algorithm 1 - Greedy: Pick the worst mini-batch and add the item with highest gain. while R0 do
. . . 2 ]* c argmln. |A-|<k: f(AJ) , // least valued block.
To generate the sequence, we order the mini-batches by decreasing function values. ) J>145
. Theoretical Guarantees_ 3 VT & argmaxveR f(UIAJ*) X // best for block.
] ] . ] 4 Aj* — Aj* U {U*} ; // add to block.
Theorem 1. For submodular function f on ground setV and mini-batch size k, suppose m = - R=R\ {v*}
\V|/k, Algorithm 1 gives an approximation ratio of ? —81;1“ : ¢ end
The bound almost matches the best known bound for the un-constrained robust submodular ! S;I&A) S>bj¥(f (A V5 j) 80 tia]tc (4. )
— . . 71 ]m
partition problem within a factor of m/(m + 1). s return (A, A, .. Agm)
. Limitat.ions of Algorithm 1: 1) V.Vhe.n .using Iagy gre_edy for the greec!y_step (Iilje 3), the memory cost is Algorithm 2: Hicrarchical Submodular Robust Par-
proportional to m|V| = |V|%/k. 2) if mini-batch size k is small, every mini-batch is not capable of titioning
representing the ground set V, we may get redundancies from combination of consecutive mini-batches. input : f,V, ki,...,k,
¢ Algorithm 2 Run Algorithm 1 in hierarChy 1 k’o = |V|, Ql = (V) ) // Q;’s store sequence of sets to
 Memory Efficiency and Group Representativeness: The peak memory cost of Algorithm 2 is max m; iki_1. ff“r“fer Pa;ti"i,°n< i1
i=1:r 2 torev:=1; 1 <r; 1:=1 o
Even for r = 2, k; = |V|/2, the peak memory is halved. In addition, mini-batches grouped by the hierarchicals | m; := k;_1/%; ; // m;: mumber of blocks for the mext
structure are also representative. partition
- Theoretical Guarantees: 1| Qi =05 /) Qi seiviatizet wion an empry sequence
Definition 1. We run Algorithm 1 with ground set size V', constraint size k' andm' = |V'|/k’, the s | forji=1; j<|Qif; j:=j+1do
' g _g ’ T A1, ..., Am, = RobustPartitionK(f, Q;|j], k;) ;
greedy step gets executed T = |V'| times, and we get a sequence of sets Q = (A, A%, ..., A, /) as the /] Qilil: ith set in the sequence
output, with AjT, having the minimal evaluation, i.e., j' € argmin;_,....f(A}). There exists an earl/est 7 Append Ay, ..., Am,; 0 Qit1 ;5 // add partitionea
greedy step 1 <t < T such that |A},| = k', andj' € argmin,.,,'f(A}), we define t := min, |A¢]. | g e o Gl e seten
Theorem 2. If we have t = 2 for every call to Algorithm 1 from Algorithm 2, then we achieve an o end 0
r 10 return )41
approximation ratio of (ZT 1) {‘7’”'

Empirical Results

« Choice of Submodular Function: Nearest Neighbor Submodular Function (a special case of a facility location function):
fan(S) = max sim (v, v'), : —llz(vy)—2(va)llz
NN (5) = )  max sim(vy,v2) =€ v
veV
fyny haturally captures the maximum likelihood estimates over the given data set for a nearest-neighbor classifier. As fy only requires similarities between data

points within the same class, for large dataset such as Imagenet, we can afford to compute such sparse similarity graph.

« Experiments on CIFAR-100 and Imagenet:

For CIFAR-100, we use the WRN-28-8 network, and for Imagenet, we use the Resnet-18. Compared to 30 randomly generated sequences on CIFAR-100, and
the p-value for on test set accuracy is 0.0009. For Imagenet, we compare to 15 randomly generated sequences and the p-value for top-1 accuracy is 0.0151.
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