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Abstract

We consider minimizing a nonconvex, smooth function f(x) on a
smooth manifold x ∈ M. We show that a perturbed Riemannian
gradient algorithm converges to a second-order stationary point in a
number of iterations that is polynomial in appropriate smoothness
parameters of f andM, and polylog in dimension. This matches the
best known rate for unconstrained smooth minimization.

Background and motivation

Consider the optimization problem

minimize
x

f (x),

subject to x ∈M,

Figure: Escaping from saddle trajectory.

whereM is a manifold of dimension d, optimization variable is x ∈ M,
and (nonconvex) function f(x) is twice differentiable. Finding global
optimum is generally not possible. We seek an approximate second order
stationary point on the manifold (defined in main theorem) using first-order
algorithms.
Related work:

• Unconstrained case: convergence rate of perturbed GD is polynomial
in smoothness parameters and d [1] .

• Equality-constrained case (with explicit constraints): convergence rate
of noisy GD is polynomial in smoothness parameters and polylog in d
[2].

Here we study perturbed Riemannian GD and show convergence rate is
polylog in d and polynomial in smoothness parameters. This extends
best known unconstrained rates to the case of non-Euclidean, manifold
constrained problems (e.g., optimization on matrix manifolds).
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Figure: (a) Exponential map on manifold; (b) Progress of two iterate sequences.

Taylor series and smoothness assumptions

Notation: Expx(y) denotes the exponential map, gradf(x) and H(x)
are Riemannian gradient and Hessian of f(x); x is a saddle point, and
qu = Exp−1

x (u).
• Riemannian gradient descent. Let f have a β-Lipschitz gradient.
There exists η = Θ(1/β) such that Riemannian gradient descent step

u+ = Expu(−ηgradf (u)) (c.f. Euclidean case: u+ = u− η∇f (u))

monotonically decreases f by η
2‖gradf (u)‖2.

• ρ-Lipschitz Hessian. Let f̂x = f ◦ Expx have a ρ-Lipschitz
Hessian, then

f̂x(qu) = f (u) ≤ f (x) + 〈gradf (x), qu〉 +
1

2
H(x)[qu, qu] +

ρ

6
‖qu‖3.

• Two perturbed iterates; negative curvature direction. Let
u,w be perturbations of x, then∥∥∥( |w+ − |u+)− ( qw − qu) + ηH(x)[ qw − qu]

∥∥∥ ≤ ηρ̂‖ qw−qu‖(‖ qw−x‖+‖qu−x‖).

ρ̂ is a function of (1) Hessian Lipschitz constant of f(·), (2) Hessian
Lipschitz constant of Exp·(·), (3) spectral norm of Riemannian curvature
tensor, (4) injectivity radius.

Main theorem

Let smoothness assumptions above hold. With probability δ, perturbed
Riemannian GD takes

O(
β(f (x0)− f (x∗))

ε2
log4(

βd(f (x0)− f (x∗))
ε2δ

))

iterations to reach an (ε,−
√
ρ̂ε)-stationary point, where ‖gradf (x)‖ ≤

ε and λminH(x) ≥ −
√
ρ̂ε.

Algorithm (informal)

• At iterate x, check the norm of gradient
• If large: do x+ = Expx(−ηgradf (x)) to decrease function value
• If small: near either a saddle point or a local min. Perturb iterate
by adding appropriate noise, run a few iterations
• if f decreases, iterates escape saddle point (and alg continues)
• if f doesn’t decrease: at approximate local min (alg terminates).

Example – Burer-Monteiro factorization.

Let A ∈ Sd×d, the problem

max
X∈Sd×d

trace(AX),

s.t. diag(X) = 1, X � 0, rank(X) ≤ r.

can be factorized as

max
Y ∈Rd×p

trace(AY Y T ), s.t. diag(Y Y T ) = 1.

when r(r + 1)/2 ≤ d, p(p + 1)/2 ≥ d.
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Iteration versus function value. The iterations
start from a saddle point, is perturbed by the

noise, and converges to a local minimum (that is
proven global as well).

Contributions

For (nonconvex) optimization on Riemannian manifold, perturbed Rieman-
nian GD has a rate

• Polylog in dimension (improving ‘polynomial in dimension’ rate in [2])
• Comparable polynomial dependence on ε and β as in unconstrained
case [1].

• Explicit polynomial dependence of curvature constant, which is
implicit in [3].

Future work

It is known that accelerated method works in escaping saddle framework [4],
it’s also of interest whether we can run accelerated algorithm on manifolds.

Another recent trend is to consider optimization problem with equality
and inequality constraints [5, 6]. They require solution or approximation
oracle for NP-hard problems in general (including copositivity test).
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