
The Workcell

1. Bins for replaced server components
2. Two 7-axis Kuka LBR iiwa 14 arms to replace

components
3. Overhead camera for determining server pose
4. Large component end effector
5. RAM End Effector
6. Conveyor belt to bring in server for repair
7. Parts tray for new components

Network Interface Card (NIC)

RAM Sticks

Heat Sink

Hard Disk Drive (HDDs)

Fig. 5: Diagram of server components to be replaced

Fig. 4: Image of the workcell with a server positioned

AUTOMATED SERVER REPAIR FOR DATA CENTERS
USING TWO 7-AXIS ARMS AND MACHINE VISION

STUDENTS: MARCUS CHU, WICHWONG PREMVUTI, IAN GOOD, KHAI PHAM

Manually repairing servers is labor intensive and costly for large server farms. By implementing a work
cell that can replace parts on a server with minimal human intervention, we produced an
autonomous solution that can help to reduce costs and man hours spent on menial tasks.

With two KUKA 7-axis arms and custom end effectors on a server work cell, we want to prepare for a
more realistic use-case scenario by integrating machine vision into the project to handle arbitrary server
poses. The work cell will work in tandem with a server pulling autonomous guided vehicle (AGV), where
the AGV will pass the server to the workcell onto a conveyor belt.

Introduction

ADVISORS: HOWARD CHIZECK, NICHOLAS KEEHN

SPONSORS: MICROSOFT

Motion Planning & Simulation

• To access a goal with variable pose, motion planning was utilized of teaching.
• A simulation scene was modeled and generated using MoveIt!, a ROS package for

simulation and motion planning.
• Plans can be modeled and executed directly from the simulation with iiwa_stack[1].
• OMPL provides plugins for most motion planning algorithms (RRT, PRM, etc.).
• Motion planning requests can be post-processed to optimize trajectory.
• Gradient-based planners such as CHOMP[2] used in post-processing provide

smoother trajectories than conventional planners alone.

Fig. 2: Simulation scene generated in MoveIt Fig. 3: Process flow for trajectory generation

Software Architecture

• ROS was chosen as the framework for inter-process communication and package
management.

• Separating processes into nodes allows for granular organization, all controlled from the
ROS master. Since our system is distributed across several computers and multiple devices,
having an organized structure is a requirement.

• Integration with KUKA controller was a challenge as there was no official ROS support.
• Used ROSJava: a ROS distro ported to run in the JRE on the KUKA controller to interface with

the arms.
• Additionally, iwa_stack[1] was used as a ROS package that provides integration for KUKA arm

execution.

Fig. 1: Overall block diagram for system software architecture.

Go to coordinates of
fiducial from overhead

camera

Measure distance from
center pixel of camera
(ie. the arm position) to

fiducial

Use ΔX and ΔY to correct
coordinates of fiducial
and by extension, the

RAM stick

Machine Vision
Overhead camera to provide server pose information
• Using the pose of three fiducials mounted on the server, we can

figure out the theta, and XY coordinates of our parts of interest
• Uses Cognex’s Pat-Max pattern-matching tool to train the camera

to recognize the mounted fiducials
On-camera to provide error-correction for RAM
• RAM sticks require precise and accurate coordinates
• Control flow for on-arm camera:

Fig. 6: Image from overhead camera (above)

Fig. 7: Image from on-arm camera

Fig. 9: 3D Render of RAM End Effector

Fig. 8: 3D Render of Large Component End Effector

Large Component End Effector

RAM End Effector

References and Acknowledgements
Special thanks to:
• Nicholas Keehn, Corina Arama, and Sean James of Microsoft
• Yana Sosnovskaya, Dr. Howard Chizek, and Rodney Wells of the University of

Washington

[1] C. Hennersperger, B. Fuerst, S. Virga, O. Zettinig, B. Frisch, T. Neff, and N. Navab, “Towards MRI-Based Autonomous
Robotic US Acquisitions: A First Feasibility Study,” IEEE Transactions on Medical Imaging, vol. 36, no. 2, pp. 538–548,
2017.

[2] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP: Gradient optimization techniques for efficient motion
planning,” 2009 IEEE International Conference on Robotics and Automation, 2009.

• Replaces the RAM
• Components

o Schunk Industrial I/O Actuator
o Mechanical Unlock Mechanism
o Cognex In-Sight 8402 Camera

• Pickup Orientation
o 90° offset gripper to maximize reach of arm,

as conveyor belt is offset from center

• Replaces the NIC, CPU heat sinks, and HDDs
• Components

o Schunk Industrial I/O Actuator
o Rubber grip pads (black)
o 3D Printed FDM structure (orange)

• Pickup Orientation
o 30° offset between components was

determined via geometric constraints
o Constraints included collision of the server

and the kinematic constraints of the arm

Server Ingress

• Wide Dorner Conveyor Belt to move
servers into position

• Driven by ETM MD100 Drive System that is
controlled by an Arduino Uno in lieu of a
PLC

Communication/Controllers
• Arduino Uno communicates directly to ROS

master via Serial
• Conveyor belt automatically stops when

the server is in position

Fig. 10: Render of conveyor belt used to transport server

09

	Slide Number 1

