
01eCoffee: Remote Ordering Development
STUDENTS: Qihuang Chen, Yilin Wang, Colleen Park, Celeste Xulei Cheng

FACULTY ADVISORS: Prof. Ken Eguro, Daniel King

INDUSTRY ADVISORS: Mr. Michael Nassirian, Mr. Marko Munda

SPONSOR COMPANY: ARVR Academy

• In today’s market, retailers lack customer exposure and have difficulties getting rid
of inventory, and customers lack access to sale items.

• Our mission is to design and implement a web interface for retailers to manually
send notifications to customers, and an App for customers to make orders.

• Requirements: The main work is divided into three parts: a web interface for
retailer, an Android App for customer, and back-end services.

Motivation/Requirements

Front-end

Deliverables

• Most functions are available. Another function of Notifications is designed for the first-used
customers when people pass by a store, which is registered in the eCoffee application.

• Further improvements of frontend design and implementation.
• Consider more edge tests in software development process and Quality Assurance test

preventing defects in production. Realize network security for data communications.
• Optimize location accuracy, signal intensity, battery efficiency and update speed for discovery

service using tools like BlueTooth 5.0 Long Range functionality.

Reference: Spring Rest API Tutorial database MongoDB Atlas

Conclusion, Future Work, and References

• The figure on the right is the UI
design of the app. It shows basic user
flow like how a typical user would use
the app to place orders.

• The figure on the top left is the
current homepage for the eCoffee
app running on an Android emulator.
It is the front-end for all customers
who download our app to use. The
process of demo would be better
showed by video.

• The figure on the top right is the
retailer control panel written in React.
This web-page is designed for retailer
to add sales items, send notifications,
check ongoing order status and
browse order history.

• Build REST APIs with Spring framework and 3rd party toolkits, which help manage
communication between frontend and backend.

• Use MongoDB Atlas as a cloud database service for data persistence.
• Utilize Square API for payment and order management.
• Deploy the backend services to an AWS EC2 host.

• A functional remote order application with frontend and backend components.
• Online Ordering: features including 1) choosing retailers by geo-coordinates, 2) displaying

menu items, 3) making orders, and 4) paying for orders with credit cards. In addition,
customers’ purchase histories and habits of coffee are recorded in the database.

• Daily Recommendation: customers will receive daily, tailored notifications about featured
items that they may be interested in, based on their previous order histories.

• Retailer Recommendations: Retailers are able to create featured items for promotion.
Customers who subscribed to the store can receive notifications about them.

 Services Implementation

Back-end Architecture

[2]

[2]

• Account Service: Firebase Authentication provides
backend services, SDKs and UI libraries to identify a
user in the app.

• Square provides APIs to create and track orders,
manage a product catalog, accept payments.

• Order and Payment Services: Users could complete
orders showing in retailer’s Square port.

• Store service: Users could scan menu of any store in
our app.

• Notification service: Firebase Cloud Messaging (FCM)
allows retailers to send notifications to users.

• Discovery service: Find nearby stores realized by
Android LocationManager and MongoDB Geospatial
queries.

• Onboarding Service: OAuth to realize retailer
authentication to access their store information
stored in their Square account.

 ARVR Academy

https://spring.io/guides/tutorials/rest/
https://www.mongodb.com/cloud/atlas1

