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TESTS PROPERTIES CONCLUSION
e Perform testing on Minecraft storage system’s interface e Flexibility e Testing and evaluating “LevelDB" and other key/value storage
granularly and as a whole. o StorageType: LevelStorage (LevelDB) [ MockUpStorage(std::map) implementations’ robustness and performance has been made
. . . o SizeOfData: 1 byte /100000 bytes |
e In each test, tasks (database operations) will be queued into vte / y possible through our framework.
taskG roup and configured to run in single/multi-threaded e Foolproof e The framework has helped identify bugs in Minecraft's codebase
environments. o Easy to build, clients need no programming experiences along the development process.

e Focus on getting read/write latency and disk usage e Quantization
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