MINECRAFT SAVE TEST FRAMEWORK

CHRISTOPHER ALEXANDER, KUANG-HSUAN LIN AND VEEN OUNG

Microsoft

MOTIVATION ARCHITECTURE USER OUTPUT DELIVERABLES

(a) Data Length
e Minecraft Bedrock edition is currently utilizing “LevelDB" to [O O
. . . exe - o threadl thread2 thread3 threadN -
save worlds data. This works well, however Minecraft is Ll W < v N
pushing the technology to the limits. _L _— ,Cs> g et)
— leveldb, blocka, Iy R S g
. . [i:sv ile block b; .. | Eomi NN 5
e Thus, we develop a testing framework in C++ that can be used — 7 -
: : run 022 /
to test and evaluate key/value store implementations. i testL, 1evelDB. PC. . . ‘
unit_test2, levelDB, PS4, ... K / e Y
e Allow future Minecraft developers to easily experiment with g ey ~ 8 % B R " 3 N RE xR R EEEES HE A
“LevelDB” replacements e niest 1 B
Leve P ' Begin_Test LevelStorage (b) Disk Usage (c) Latency
I(L Timer e v il 200 Numtiof%%eorations iz g . Nur_vf_erlogTasks
== 10.0
Number of tasks: , 10] g 400 == 178880 —®- 100.0
REQUIREMENT Number of operations: , 100 @ 300 .
000003.log, + 35 bytes BAPRGL B0 (s 50 =)
| | CURRENT. + 0 bytes EXPECT_NEQ(..., ...) — /Dt b 00
e Visual Studio 2019 MANIFEST-000002, + 0 bytes e — H | e X
Overall, + 35 bytes = | LevelStorage.loadData (..., .. 0 -
o (++20 Time , 0.009398 secs 1 EXPECT EQ(.,.) ||| e ormeehste () 100
e CMake 319.0-rc3 Qp BAPECT NEQL.) o
1 task 10 tasks 100 tasks 0 2000 4000 6000 8000 10000
* Python 3.6.2 Number of tasks Number of Operations
TESTS PROPERTIES CONCLUSION
e Perform testing on Minecraft storage system’s interface e Flexibility e Testing and evaluating “LevelDB" and other key/value storage
granularly and as a whole. o StorageType: LevelStorage (LevelDB) [MockUpStorage(std::map) implementations’ robustness and performance has been made
. . . o SizeOfData: 1 byte /100000 bytes |
e In each test, tasks (database operations) will be queued into vte / y possible through our framework.
taskG roup and configured to run in single/multi-threaded e Foolproof e The framework has helped identify bugs in Minecraft's codebase
environments. o Easy to build, clients need no programming experiences along the development process.

e Focus on getting read/write latency and disk usage e Quantization

o Output to a csv file for evaluation FUTURE WORK

[o Visualize the read/write latency with Python script

—h

e A C# implementation of a simple front end solution, allowing a
taskGroup

task o e Interactivity userlto pick an implementation to test, and visually show the
i = ' ' results.
B> BN L o Command line interface
& Usage: <target path> -1 <source path> -o <result path>
=, Options:
—_‘& I —1,—-—1nput Specify the input file name (e.g. testcase.csv) REFERENCE
-0,——output Specify the output file name (e.g. metric.csv)
— —h,——hel Sh his hel . ("
N P | e R e e A.Ravishankar, “How to Write a Minimal Unit Testing
Example: ./SAVE_TEST_FRAMEWORK -1 casel.csv —o0 metric.csv Framework in C++"’ Medium, [Accessed: 15_Mar_2021]

