
IMPROVE MINECRAFT PATHFINDING
STUDENTS: Rocky Zhenxiang Fang, Sisir Kadiveti, Arman Kazi, Hanze (Simon) Zhang

ADVISOR: Rania Hussein

INDUSTRY MENTOR: Jason Major

SPONSOR: Microsoft

• In the world of Minecraft, there are many different types of mobs with distinct

mob sizes and moving abilities.

• The current pathfinder in Minecraft has a very high time complexity in helping

a mob with sizes larger than 1x1 find the optimal path to its target.

• In addition, Minecraft is limited in the types of blocks they can add due to

limitations in the pathfinder. For example, vertical slabs create unique

challenges that the existing blocks don't have.

• The current pathfinder in Minecraft cannot find the optimal path if the

optimal path involves partial blocks.

Problem Statement

Problem Analysis

ResultTesting Process

• 1. Mobs cannot path find through

partial blocks.

• The reason behind this problem is

that the pathfinder currently in

Minecraft cannot recognize the

space between two vertical slabs.

• 2. It takes big mobs with a size larger than 1x1

a long time to find a path.

• The reason behind problem 2 is that the

dimension of the search space of the current

pathfinder is proportional to the mob sizes.

• For this example, every time the mob (green

mob) wants to move right, it will need to

check all red dots, which is proportional to its

size

Requirements

• The pathfinder should work with various mob size with partial blocks

• Analyze the performance difference between the original pathfinder and the

new pathfinder.

• Creating new search space (partial blocks) + cache the result (big mob) = Node

system

• One node is presented in the graph above using yellow block

• Some nodes might not be aligned with the original grid so it can adapt to partial

blocks.

• For searched space, we create a node to cache the result. In this example, if the

red blocks are visited and cached in the node system, the next time it is visited, it

will return the value from the cache but not recompute it.

• Nodes can be stored in the game file so the searching process will be faster

Test Cases

Correctness

Performance

Diagonal Movements Shortest Path 3D Space Partial Path

Simple World Complex World 3D Complex World

0

50

100

150

200

250

300

350

400

tim
e

(m
ic

ro
se

co
nd

)

Time cost of different algorithm for 1*1 mob and full blocks

original
partial
partial + big mob

Simple World:
Similar Performance

Edge Case: (3D world)
The pathfinder find another branch
and spend time exploring it

Complex World:
Partial Blocks dominates the runtime for generating more nodes

Conclusion and Future Work

0

200

400

600

800

1000

1200

1400

1600

complex_1*1 complex_2*2 complex_3*3 complex_4*4

tim
e

(m
ic

ro
se

co
nd

)

test_case (mob size)

Time spend for different algorithm under different
mob size in complex terrain

pregen
simple

• Big O run time is not affected if we generate all search nodes before pathfinding.

• Develop ways to change node in-game

• Develop ways to support arbitrary sized blocks and small mobs

• We have two problems to solve:

• For this example, when the cow is at one side of partial block tunnel, it will

evaluate the feasibility of two partial blocks individually but will not combine

the space in between them.

Green: Mob, Gray: Grid, Red: Search space

Yellow: Node, Orange: Newly generate node

• Our testing process involved 3 processes:

• First, we use Minecraft to build our test cases and export them into a mcstructure file

• Second, we take the mcstructure file into our pathfinder and output the final path and time

it spends

• Finally, we take the results and analysis them. For path, we want it to be the shortest and

for the time, we want it to spend a similar time to the original pathfinder

• We focus on the correctness and the performance of our pathfinder; thus, we design test

cases to test them.

• For correctness, we determine it by looking at the path itself, it should support 8-directional

movements, finding the shortest path, climbing up and sown in 3D space, and return the

optimal partial path if necessary.

• For performance, we focus on what will happen if the distance between the origin and the

target increase and different mob size under a different kind of world.

• Mob size, world size, and the blocks will change if the different kind of test cases are built.

• Our result shows that our pathfinder will increase search time for adding partial

blocks in some cases but will not be affected by world size and mob size.

• Simple worlds have different sizes but similar terrain, by only adding necessary

nodes, the runtime does not change a lot.

• Complex world will open more partial nodes for potential paths that increase the

runtime

• In some edge cases, the additional partial nodes might lead to a new path that is not

the optimal path, which further increases the runtime.

• By caching the result, the runtime of the same world using different sized mob does

not change compared to the original algorithm.

