
Apply the Design Pattern of Entity Component System 
(ECS) for a cross-platform network layer
STUDENTS: Roee Horowitz, Erik Huang, Roger Liao

ADVISOR: RANIA HUSSEIN

INDUSTRY MENTORS: ROBERT SANCHEZ, RADHA KOTAMARTI

SPONSOR: MICROSOFT

• Minecraft's game engine is built on an ECS architecture, currently its network 

and replication system is outside of the ECS

• Our project had 3 main objectives

1) To build a sandbox multiplayer game with an ECS engine usging ENTT.

2) To build a replication system around that game.

3) To recommend a design pattern for an ECS replication system for Minecraft.

Summary

Terminology

• The current system assumes a 

reliable data transfer protocol

• Future work would be invested in 

porting the design to an unreliable 

protocol

Future Work, References, and Acknowledgments

Repplication Pipeline

Conditional Logic in Serialization

• 20% of Minecraft's components 

have some sort of conditional 

logic in how they are serialized.

• Our system allows conditional 

serialization.

• Additionally, developers can 

choose to only serialize certain 

fields at runtime, lowering 

bandwidth.

• In ECS, data is held in components. 

To replicate an entity, we only 

need to replicate the components.

• To be sent over the network, 

component data must be 

serialized.

• We compared the bandwidth vs. 

Runtime of serialization libraries 

and chose MsgPack (JSON style).

• Our initial choice was Protobuf, 

a protocol buffer-based library, 

but moved away as it didn’t make 

sense in a data driven system.

• Our game uses deterministic 

lockstep network design

• The only messages sent by a user 

are login and controls

• Game logics are entirely processed 

by the server

• Component updates are 

broadcasted back to the users via 

the replication system.

• Cheating is limited, since the server 

has complete authority over how 

the game is played. Clients can only 

send input data over the wire.

Replication and Serialization Networking Structure

[2]

References:

https://github.com/thekvs/cpp-serializers

http://www.jenkinssoftware.com/

https://github.com/skypjack/entt

https://developers.google.com/protocol-buffers

https://msgpack.org/index.html

Deterministic

Lockstep
A game networking technique in 

which the only messages sent 

from the user to the server are 

controls. The server simulates 

the game and responds to 

controls by sending game 

updates to all users.

Replication

Sharing information to ensure 

consistency across all nodes in a 

networked system.

Serialization

Serialization: The process of 

translating an object into a 

format that can be stored and 

reconstructed later.

Entity Component System

An alternative to standard inheritance. Components hold only data 

and no behavior, systems hold only behavior and no data, and 

entities are only 64-bit identifiers.

Game Architecture

• On updating of an entitys networked component, the replication system is notified 

by enqueing the entity id and component id onto an update map.

• On game tick the map is flushed, all new data is serialized and packetized, and the 

updates are broadcasted to all clients.

FSM for the Replication System

UML Diagram for the Game's Architecture

Example of the Game UI in Action

Visualization of the Network System

Comparison of Various Serialization Libraries

• The Game is made of 4 primary systems and several auxility subsystems.

• The Game Data is shared acrossed all primary systems.

• Not all systems are being used in the final version as we designed different systems for 

different serialization libraries like ProtoBuffer and MessagePack.

• In the final version, the reflection system designed for MessagePack is in use.

https://github.com/thekvs/cpp-serializers
http://www.jenkinssoftware.com/
https://github.com/skypjack/entt
https://developers.google.com/protocol-buffers

