COOPERATIVE AUTONOMOUS DISTRIBUTED ROBOTIC EXPLORATION (CADRE) R&D

STUDENTS: YILIN LIU, JOHN BRUGATO, JINGHUI SONG, JACK CHUANG

INTRODUCTION

- CADRE project is developing a network of shoe-box-sized mobile robots called **PUFFER** that could enable future autonomous robotic exploration of Moon, Mars... etc.
- Each robot contains an onboard computer, wireless radio and camera
- In this project, we divided to **software** team who in charge of the formation control and the **hardware team**.

state = 0

arrive at waypoint /

state = 1

start new goal

FORMATION CONTROL

- The distributed measurement techniques require robots to autonomously explore unknown places while **maintaining a** specific formation.
- Develop parametric formation control algorithms using **ROS**.
- Each PUFFER will publish message to talk to other PUFFERs.

WAYPOINTS MODE

- Each puffer will calculate individual trajectory based on the given offsets between the puffers and the scan length.
- The puffers will reach each checkpoint in a synchronized manner.

ELECTRICAL & COMPUTER ENGINEERING

UNIVERSITY of WASHINGTON

ADVISORS: BLAKE HANNAFORD, ALESSANDRO BUSCICCHIO SPONSORS: NASA JPL

- Use the Lyapunov control
- The leader puffer will wait for the

FORMATION SIMULATION

- Obstacle detection in the simulation environment Gazebo by the camera. • The simulated mission time of **waypoint mode** is less than leader-follower mode.

- The PUFFER can climb up from 330 degrees. • The maximum distance from the receiver
- and antenna is approximately 10cm.

- The current design of PUFFER utilizes a rigid ball as tail.
- traction and **preventing the rover flipping over** when going downhill by shifting center of gravity back.
- Allows the PUFFER can **directly move backward and** pivot better.

- Integrate the simulated results into real PUFFER successfully.
- terms of mobility.

Mission Time 🗧 waypoint following mode 🛛 🗧 leader-follower mode

DUST ACCUMULATION DETECTION

2.5
2.0

- Utilize the change of solar cell characteristics, which is the **power peak** and **corresponding voltage**, at different light intensity to detect the dust accumulation.
- Use rosserial to communicate with PUFFER about current environment condition.
- The experiment setup is with fixed light source and add flour gradually to see how the dust will affect solar cell output.

WIRELESS CHARGING PLATFORM

TAIL AND CASTER WHEEL

Caster wheel is chosen in hope of improving the

FUTURE WORK

• Use the PCB to integrate the result of solar cell into the rover. • Test different caster wheels to see if and/or which perform better than previous design in