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• Reliable visual perception plays a critical role in enabling autonomous vehicles 

to safely navigate unseen, unstructured environments.

• In order to anticipate and avoid obstacles, such a perception system needs to 

detect, classify, localize, and track dynamic objects within range of the vehicle.

• Many perception systems in state-of-the-art autonomous vehicles rely on 

LiDAR (light detection and ranging) to produce an accurate geometric 

representation of the vehicle’s environment; however, such systems can be 

costly to acquire and maintain. 

• Our project focuses on object detection and tracking from 2D RGB camera 

inputs, owing to their relative low cost and capacity to capture dense 

representations of scene textures.

INTRODUCTION & BACKGROUND IMPLEMENTATION DETAILS

• Inputs to the system are a stream of RGB 

images captured by each camera: 
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• Objects are represented as 3D cuboid 

“bounding boxes”, parameterized by their 

center point 𝑥, 𝑦, 𝑧 ∈ ℝ3, size dimensions 

𝑙𝑒𝑛𝑔𝑡ℎ, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡 ∈ ℝ3 , orientation in 

the plane of the ego vehicle 𝜃 ∈ ℝ3 , and 

their class - one of {𝑏𝑖𝑐𝑦𝑐𝑙𝑒,𝑚𝑜𝑡𝑜𝑟𝑐𝑦𝑐𝑙𝑒, 

𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛, 𝑏𝑢𝑠, 𝑐𝑎𝑟, 𝑡𝑟𝑎𝑖𝑙𝑒𝑟, 𝑡𝑟𝑢𝑐𝑘} - and a 

unique identity signature 𝑠.

SYSTEM REQUIREMENTS

• The tracker attempts to associate the identity signatures of detected objects 

to the same objects detected at previous time steps, thereby generating a 

trajectory of each object’s path across time.

• We evaluate the system on the 

nuScenes dataset [0], which 

consists of 15h of driving data in 

Boston and Singapore across a 

variety of urban traffic scenarios, 

times, and weather conditions.

• Ground truth annotations are 

provided 2 Hz.

• All objects that are not directly visible to cameras or greater than 40m away 

from the ego vehicle are removed prior to evaluation.

• Ego Vehicle: Renault Zoe

• Cameras: 6x Basler acA1600-60gc, Lens F1.8 f5.5mm 1/1.8“ @ 12 Hz

• Radar: 5x Continental ARS 408-21 @ 13 Hz

• IMU & GPS: 1x Advanced Navigation Spatial

• LiDAR point clouds are not provided as input to the perception pipeline.
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• We present a camera-based perception pipeline for 3D object classification, 

detection, and tracking of dynamic objects in an autonomous driving 

context. The system runs in near real-time on a desktop GPU and generates 

object tracks that can be fed downstream to a motion planning and control 

system for navigation in autonomous driving.
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• Depth estimation is challenging with a single camera - a stereo camera 

setup provides more robust 3D resolution and may be better suited to 

safety critical applications.

• Radar was underutilized in this project due to its sparsity, high prevalence 

of false positives; however, radar returns instantaneous radial velocity 

estimates which can be used to refine vehicle motion estimates.

• We use the DLA-34 implementation of CenterNet [2] with deformable 

convolutions as the backbone feature extractor, with additional layers to 

infer the 3D bounding box characteristics of all objects in the environment.

• All object states are transformed and compensated by odometry estimates 

from the ego vehicle’s CAN data.

• Overlapping objects from different views are resolved via NMS (non-

maximum suppression).

• Data association is performed via the Hungarian algorithm method over 3D 

IOU (intersection-over-union) as in AB3DMOT [3]. Unmatched tracks are 

kept for 𝑡 = 3 before they are deleted.

• Object states are tracked with a 3D Kalman Filter [3] with a velocity 

augmented state. Motion models and uncertainty estimates are tuned 

based on the class of the tracked object 𝑣𝑒ℎ𝑖𝑐𝑙𝑒, 𝑐𝑦𝑐𝑙𝑖𝑠𝑡, 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛 .

• At inference time, full sweeps of the data at native sensor sampling rates 

are used for detection and tracking.
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