

MANAGED EV CHARGING

STUDENTS: JAMES CLOUGH, KELSEY FOSTER, TRAN QUACH, CARMEN TWITCHELL

· Energy requirements for an electrified fleet

Managed and unmanaged charging schedules

Project Outputs

· Solar generation estimate

Financial estimate [4]

Project Objectives and Requirements

- Write a transportation electrification plan including solar generation for UW Transportation and for Recology
- Develop a software tool to schedule and allocate charging for an EV fleet that meets operational requirements while optimizing the demand for solar grid capacity Total Scheduled

Key Milestones

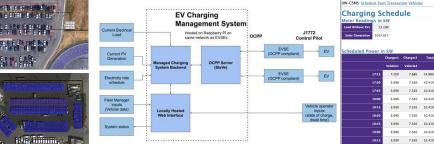
4				
Software Tool	UW Electrification Plan	Recology Electrification Plan	Capstone Final Deliverables	
*	· · · · ·	+	+	
Develop baseline algorithm	UW fleet and charger makeup	Recology fleet and charger makeup	Final Report	
+			· · · ·	
Test with microcontroller	E1 & E18 solar array generation	Recology solar array generation	Final Poster	
+		+		
Supply/demand algorithm	UW fleet charging schedule	Recology fleet charging schedule	Final Presentation	
+		+		
Test with real charger and solar	UW fleet demand curve	Recology fleet demand curve		
+		+		
Financial analysis	Financial analysis	Financial analysis		

Project Procedure

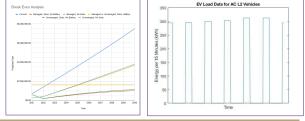
- 1. Research the fleet's composition and operational requirements
- 2. Identify EVs with similar capabilities 3. Calculate the vehicles' energy
- requirements based on current usage 4. Determine the number and type of
- EV chargers needed to meet these energy requirements during the time the vehicles are parked
- 5. Create a charging schedule 6. Determine the charging
- infrastructure needed for each fleet and incorporate solar generation in the electrical design [1]

ELECTRICAL & COMPUTER ENGINEERING

Software and Hardware Implementation


AC Level 2 Charger

- · Algorithm to minimize the overall cost of charging by scheduling charging operations when electricity is less expensive and utilizing solar generation when it is available
- Controlled using a Raspberry Pi


Software Tool Features

- Local wi-fi communication of software tool and SteVe server with EV chargers [2] [3] · Stored database for fleet vehicles
- · Web interface where users can view the system status and initiate a new charging transaction
- Automatic calculation for optimal charging schedule for each vehicle. The schedule is recalculated every 15 minutes, and whenever a charging transaction begins or ends.

••• • • • • • • • • • • • • • • • • •				
 	🖞 🛕 Not Secure	uw-csms.local:5000/vehicles		
UW-CSMS:	Schedule Start Transac	ction Vehicles		
Vehic	les			
	Battery Capacity (kWH)	Onboard Charger Power (kW)	Charger ID	Battery Percentage
Vehicle ID				
Vehicle1	66.0	7.20	Charger1	31.2%
Vehicle2	88.0	7.20		
Vehicle3	100.0	8.00		
Vehicle4	180.0	11.50	Charger2	47.0%
VehicleS	100.0	7.20		
Add Vehicl	2			

Infrastructure preliminary design Software and hardware prototype for managed charging

Discussion of Results

Conclusion and Future Work

· The software tool and transportation electrification designs will help UW transportation achieve its goal of reducing the University's carbon footprint to 45% in 2030 and help Recology to electrify its fleet efficiently in the near future

Recorded to electrify its neer enricentry in the nea	
UW Transportation Electrification Plan	UW Transportation • Scaled-down implementation of syste
Proved the feasibility 100% fleet electrification	Electrification Plan Transportation Electrification Plan document from UW Solar
Recology Electrification Plan	Recology
Developed a solution given grid feeder and space constraints	Electrification Plan Propose solution options to Recology
Managed Charging Software and Hardware	Managed Charging • Modify assumptions and constraints
Demonstrated the use of the SteVe server to implement a managed charging schedule	System System - Test algorithm with more chargers

Acknowledgements and References

Thank you to: Sponsor- Seattle City Light Industry Advisor- Lucie Huang ECE Advisor- Prof. Daniel Kirschen UW Solar Advisor- Prof. Jan Whittington Teaching Assistant- Shruti Misra ENGINE Capstone Professor- Prof. Payman Arabshahi Other partners- Danny Eden from UW Transportation, Ryan Rizor from Atom Power, Derek Ruckman from Recology,

Jeremy Park from UW Facilities, Joe Martek from SCL We really appreciate everyone's support and advising for this project and hope to continue managed charging efforts at UW and in the Seattle area!

References [1] Advanced Solar Design Software. HelioScope. (n.d.). https://www.helioscope.com/.

[2] J1772: SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler - SAE International, 2017. [Online]. Available: https://www.sae.org/standards/content/i1772_201710/ [Accessed: 01-May-2021].

[3] "Open Charge Point Protocol 1.6," Open Charge Alliance, 2017. [Online]. Available: https://www.openchargealliance.org/protocols/ocpp-16/. [Accessed: 01-May-2021].

[4] Business Rates. Seattle City Light. (n.d.). https://www.seattle.gov/city-light/business-solutions/business-billing-and-account-information/businessrates#seattlehusinesses

ADVISORS: LUCIE HUANG (SCL), DANIEL KIRSCHEN (ECE), JAN WHITTINGTON (URBDP)

SPONSOR: SEATTLE CITY LIGHT

FORFEL HOREEN BEFFFFERE

