Error detection of text queries transcribed

from voice input

STUDENTS: Aravind Narayanan, Zhuoran

People use voice for in-car navigation systems. However, the system might have
trouble processing what exactly the user says, depending on noise from
surroundings as well as accents.

The system will come up with a few strings for what the user could have said. For
example, if the user said “university,” then the system'’s voice processor might
hear two possibilities: “university” and “universe city".

Our goal is to rank these possible queries in order of likelihood of what the user
actually meant.

Given a list of possible input strings, order a list of the same strings ordered
correctly based on relevance.

Eliminate errors from the input queries that were transcribed from speech
(nonsensical phrase and misspelled words should be filtered out.)

Our program should be organized into a Java library (and be able to be run
through a JAR file).

We need to create an Android test application in order to run the library.
Finally, we need a full report and documentation detailing our entire
implementation.

Going back to the example mentioned before, to us humans it is obvious that
“university” should be ranked above “universe city” because “universe city” is a
nonsensical phrase. However, a machine would have no way of knowing that
without having some training data to work with.

In order to train our program, we use a file called “local.txt” which includes a ton of
searches by different users.

Below is a snippet of “local.txt.” As you can see, it contains various searches as well
as the location of the user during the search, in latitude and longitude.

Ruins 32.783 -96.784 .
direction to siteton mo 39.184 -82.509 .
6225 nw 48th St KCMO 64151 39.169 -94.559

Meadowlands golf club calabash 33.823 -78.659

Meadowlands golf club calabash 33.823 -78.659

Smoothie king 28.292 -81.583

Barley cirlce 39.803 -77.037 .
Smoke 28.005 -82.73

Gas 33.861 -118.316

88 main street ashburham ma 42.33 -71.111

Chase 42.859 -85.696

Clearwater smoke shop 27.991 -82.73

Josefeen crossing 45.766 -108.581

ou, Chingpo Lin

Now, how do we rank input queries when given a training data set like this? We can rank phrases

by their frequency, or how often they are mentioned.
Our algorithm counts the frequency of every bigram (set of two words) in “local.txt”. Some
examples of bigrams from the snippet above would be “golf club” and “club calabash”.

When prepositions like “of” or “in” are encountered, we include the word after the preposition as

well. For example, we count the full phrase “town of detroit” instead of splitting it up into two
bigrams. This is done to not give too much importance to common filler words.

When full queries themselves are just a single word like “Gas” we just store that word alone.
Our dictionary is stored as a text file called “word.txt". Here is a snippet of the dictionary. The
count of each phrase is shown below the phrase.

1

blirbonnet bay
1

blise id

blisne target
1

blisnemn

1

bliss

bliss army
1
Once we have a dictionary of phrases, we can rank queries based on their score. If a query

is longer than two words, its score is calculated by getting the sum of the counts of all of
the bigrams in that query. For example, let us take the query “wayne state university”.

wayne state state university
54 646

Above are snippets from “word.txt". You add the counts of “wayne state” and “state university” to

get the score for “wayne state university”. 54+646 = 700.
Once all of the input queries have scores, they can just be ranked from highest to lowest score.
For example, let's say the user inputs the following list of queries to be ordered:

university | wayne state university | state university

This input list will be ordered in the following way. The score for each query is shown after the

quen: wayne state university: 700

state university: 646
university: 8

TELENAV

After algorithm implementation, we build a .jar file as a library for ease of use in both
Android development and command-line-execution.

As shown below, calling the jar library through command line requires a quite a few
lines of code every time.

[1inbob@hayashiyasuhiros-MacBook-Pro query_sorter_jar % cd /Users/linbob/Desktop/]
EE497/telenavProject/out/artifacts/query_sorter_jar
[1inbob@hayashiyasuhiros-MacBook-Pro query_sorter_jar % 1s]
query-sorter.jar

[1inbob@hayashiyasuhiros-MacBook-Pro query_sorter_jar % export CLASSPATH
/linbob/Desktop/EE497/telenavProject/out/artifacts/query_sorter_jar

/Users]

[1inbobhayashiyasuhiros-MacBook-Pro query_sorter_jar % java —cp query-sorter.jar]
test.TestDictionary /Users/linbob/Desktop/EE497/telenavProject/word. txt

Please enter your input Strings split by |:
pizza | new york pizza
the output is: new york pizza | pizza

To simplify the user interface, we also built a simple Android App for our program.
As shown below, the program takes a number of possible text queries as inputs
and sorts them by their score.
+ Theinput screen is shown on the left.
The output screen is shown on the
right.

Please type in the inputs
university
wayne state university

state university

wayne state university > state
university > university

©)

suUBMIT

The Android App should include a function to support the .jar file library so that it
can save plenty of time by not re-loading the same dictionary whenever it runs.
We need to improve our address checker, which checks whether queries are
addresses or non-addresses. Currently, many edge cases are not handled.

Industry Mentors: Srinivasa Parvathareddy, Changzheng Jiang, Akira Zhang, Kumar
Maddali

Faculty Advisors: Lillian Ratliff, Mari Ostendorf

TA: Haobo Zhang

