
Fiscal Web Portal ENGINE Phase II
Students: XIAOTONG YANG, YUSIE YAO
INDUSTRY MENTORS: Ted Hanson, Bridget Faherty, Debbie Carnes, Shelley Prosise, Konrad Schroder, Al Brower, Jesse Chiem
FACULTY MENTORS: Payman Arabshahi
TEACHING ASSISTANT: Shruti Misra

ADVISOR: Ted Hanson

SPONSOR: College of Engineering

Currently, the College of Engineering lacks a tool to to manage requests for
administrative services, specifically financial transactional duties. So we designed
and developed a web application that serves as an advanced ticketing tool for
UW College of Engineering departments to manage fiscal related tasks
(reimbursement, travel, purchase, etc.) from users' request submission through
fiscal staffs' approval and denial.
The functionalities of this web application includes:
• Submission of requests by users with the ability to route for appropriate
approvals, upload documents, and get a receipt number.
• The budget approvers of that ticket approves or declines the request.
• Fiscal staffs review the approved requests again.
• System administrator manages units, subunits, budgets, and people.

Problem Statement/Objective Tools

Conclusion, References, and Acknowledgments

REQUIREMENTS

• Understand the business goals
• Develop New login Authentication & Authorization workflow: SSO into the

application via UW NetID.
• Revise REST API calls

• Display submitted requests module
• Draft for notifications for approvers
• Complete the workflow
• Audit Trail Table implementation

Front-End Service:
We utilize the React and Redux, with extensive usage of Ant Design as React UI
Components library and Redux Thunk as Middleware. This RESTful front-end service
renders the page, interacts with the users’ actions, and sends different APIs (Application
Programming Interface) provided by the back-end service. We also use create-react-app
as integrated toolchain to save the trouble dealing with module bundler and compiling
the javascript, because under the hood of create-react-app, it uses Babel and webpack.
Also, we handle authentication through react-google-login npm package.

Back-End Service:
We use Koa2 as the web framework for Node.js. We connect the backend with MongoDB
Atlas Database, with Mongoose managing the relationships between data and providing
schema validation. This RESTful backend-service contains queries to CRUD (create, read,
update, delete) the database, responding to API requests sent by the front-end service.

Implementation

DISCUSSION/FUTURE WORK
For the future work, development-wise, we can consider how to let user edit their
requests after they are rejected by the approvers. We need to utilize JWT (JSON web
token) for API Protections, limiting access to API calls. Also, we can let the user upload
Excel sheet rather than input data for every budget. We can develop an email
notification system to alert the approvers as well. Operation-wise, we need to create a
pipeline to support continuous integration and delivery, and eventually deploy the
service into the some Cloud Platform.

We refer to some official documents for different languages and frameworks:
https://reactjs.org/docs/create-a-new-react-app.html (create-react-app)
https://ant.design/components/overview/ (Ant Design React UI Components Library)
https://www.npmjs.com/package/react-google-login (react-google-login)
https://mongoosejs.com/docs/api.html (queries to search)

This application consists of 4 main levels:
• Requester layer to submit requests (6 forms).
• Approver layer to approve requests for specific budgets.
• Fiscal staff layer to deal with requests under within a unit.
• Administrator layer to handle the configuration of units, subunits, budgets, and people.

1. Submit a Request (Submitter)

2. Approve / Decline a Request (Approver)

3. See the Audit Table

https://reactjs.org/docs/create-a-new-react-app.html
https://ant.design/components/overview/
https://www.npmjs.com/package/react-google-login
https://mongoosejs.com/docs/api.html

