

TISSUE CHARACTERIZATION WITH SMART GRASPER ROBOT STUDENTS: YANA SOSNOVSKAYA, HUNTER NORTH, CHULJUNG, ETHAN SEPA, **SHAHERYAR HASNAIN**

Introduction

• Minimally-Invasive Surgeries (MIS) has advantages for patients (faster recovery time, less blood loss, less trauma to tissue), however MIS also has a disadvantage – lacking tactile feedback for the surgeons. Multi-sensory laparoscopic grasper can help with this problem.

- Original "Smart" Grasper was developed by Philip R. Roan, and had optical, electrical impedance and temperature sensors on the grasper's jaws. [1]
- Modified by Astrini Sie in work [2].

Original "Smart" Grasper design developed by Philip R. Roan. A lot of wires were broken and sensors were shorted due to transportation and storage of the "Smart" Grasper robot

Multi-modal surgical instrument has the following advantages:

- Providing real-time feedback to surgeons in MS;
- \succ Modeling the tissue for surgical robotics simulators;
- \succ The study of tissue behavior in response to surgical manipulators; \succ In-vivo and in-vitro tissue classification;
- \succ The diagnosis of tissue abnormalities in early stages;

• Sensor Fusion Algorithm (DL based) for tissue characterization via "Smart" Grasper is based on the correlation of sensory measurements with physical, acoustical, optical, electrical and thermal properties of tissue.

ELECTRICAL & COMPUTER ENGINEERING

- UNIVERSITY of WASHINGTON

Hardware Prototype: Motorized Surgical Grasper

• The developed motorized surgical grasper based on original "Smart" Grasper has miniaturized sensors set: load cell, 3MHz ultrasonic transducer, RGB borescope camera, pulse-oximetry, thermistor and multi-frequency 2-point bioimpedance.

Data acquisition electronics

Surgical motorized "Smart" Grasper with miniature sensors

Electrical Impedance Calibration

ADVISORS: BLAKE HANNAFORD, ELI SHLIZERMAN, MIKA N. SINANAN ACKNOWLEDGEMENT: J. KAPLAN, M. ARNOLD, A. SIE, A. AVULA, G. ZOOK, K. KAISER, L. CHOQUER, K.TAKANISHI, J.M. JAIME, W. PERMVUTI

Miniature sensor set

Future Work. References.

- Integrate all subsystems togethered
- Collect data using Smart Gra from organs: liver, kidneys, soft tissue.
- Process the data with preprocessing and deep learnin, algorithms to characterize tl tissue.

Pulse-Oximetry

gether; asper muscle, ng the	 Philip R. Roan, "An instrumented Surgical Tool for Local Ischemia Detection," Ph.D. Thesis, University of Washington, 2011. Astrini Sie, "Online Identification of Abdominal Tissues During Grasping Using an Instrumented Laparoscopic Grasper", M.S. Thesis, University of Minnesota, 2013. M. Daoud et al, "Tissue Classification Using Ultrasonic-Induced Variations in Acoustic Backscattering Features", IEEE transactions " Biomedical Engineering, February 2013. J. Kaplan, Y. Sosnovskaya, M. Arnold, B. Hannaford, "Sensor Fusion for Force and Position Calibration of a Motorized Surgical Smart Grasper", ISMR21, November 2021.
	ADVANCED

CIRCUITS