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Robot Decentralized control Game

Joint interest in Control and ML(Reinforcement Learning)
ML: Policy gradient descent on nonconvex objectives
Control theory: Reparameterize the problem to obtain a convex objective
Question: If the optimal control problem can be made convex, does policy
gradient descent converge to global optimum?

Feedback control & Policy gradient
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Left: The controller observes the measurement y and send feedback
control u. The goal is related to the transfer function (e.g., minimizing the
linear quadratic cost, H2,H∞ norms) from d to w.
Right: Zeroth order policy gradient descent for minimizing L2 gain. The
cost function is nonconvex in policy and the iterates converge to a global
minimum.

Summary

• Generality: For a family of optimal control problems that can be
convexified, policy gradient descent converges to the global optimum
despite the nonconvexity.
• Connection between domains: We propose a concise proof that

bridges the nonconvex landscape with the convex parameterizations.

Y. Sun and M. Fazel, “Learning Optimal Controllers by Policy Gradient: Global Optimality
via Convex Parameterization,” 2021 60th IEEE Conference on Decision and Control (CDC).

Continuous time linear quadratic regulator

• Cost:

L(u(t)) := Ex0∼N (0,Σ)

∫ ∞
0

(x(t)>Qx(t) + u(t)>Ru(t))dt

Learn u that minimizes the loss.
• Optimal controller: state feedback by Riccati equations.

Solve PR: APR + PRA
> + Q− PRBR−1BPR = 0,

Solve K∗: u = K∗x = −R−1B>PRx.

Learn K∗.
• Convex formulation

min
Z,L,P

f (L, P, Z) := Tr(QP ) + Tr(ZR)

s.t., A(P ) + B(L) + Σ = 0,

[
Z L>

L P

]
� 0

A(P ) = AP + (AP )>, B(L) = BL + (BL)>. And K∗ = L∗P ∗−1.

Main theorem

min
K

L(K),

s.t., K stabilizes
⇒

min
Z,L,P

f (L, P, Z),

s.t., (L, P, Z) ∈ S
Assumptions:
• S is convex. f (L, P, Z) is convex on S.
• We can express L(K) as:

L(K) = min
L,P,Z

f (L, P, Z), s.t.,(L, P, Z) ∈ S, K = LP−1.

Theorem: With the assumptions, we have ∇L(K) = 0 ⇔ K = K∗.
Policy gradient descent converges to a global optimum.

Interaction between spaces

Gradient dominance of nonconvex cost ⇐
Gradient dominance of convex cost

+ Diffeomorphism between two spaces

Discrete time Markov jump system

• Dynamics: x(t + 1) = Aw(t)x(t) + Bw(t)u(t), w(t) ∈ {1, ..., N}.
N = 1: Discrete time linear system
• Probabilistic model for transition

Pr(w(t + 1) = j|w(t) = i) = ρij ∈ [0, 1], ∀t ≥ 0.

• Cost: let K = [K1, ..., KN ],

min
K
L(K) := Ew,x0

∞∑
t=0

x(t)>Qx(t) + u(t)>Ru(t), u(t) = Kw(t)x(t).

• Convex formulation: Initial distribution Pr(w(0) = i) = pi,

min Tr(QX0) + Tr(Z0R),

s.t. X0 =

N∑
i=1

Xi, Z0 =

N∑
i=1

Zi,

[
Zi Li
L>i Xi

]
� 0,

Xi − piΣ =

N∑
j=1

Uji,

[
ρ−1
ji Uji AjXj + BjLj

(AjXj + BjLj)
> Xj

]
� 0.

Minimizing L2 gain

• Dynamics

ẋ(t) = Ax(t) + Bu(t) + Bww(t), y = Cx(t) + Du(t)

x is state, u is input, w is a perturbation. Find the optimal state
feedback controller u(t) = K∗x(t).
• Cost: L(K) := sup‖w‖2=1 ‖y‖2.
• Convex formulation

min
L,P,γ

f (L, P, γ) := γ, s.t., γ ≥ 0,[
AP + PA> + BL + L>B> + BwB

>
w (CP + DL)>

CP + DL −γ2I

]
� 0.

Finite horizon time varying discrete time LQR

• Dynamics: x(t + 1) = A(t)x(t) + B(t)u(t) + w(t).
Controller: u(t) =

∑t
i=0K(t, t− i)x(i), K stacks K.

• Cost: minK L(K) :=
∑T
t=0 x(t)>Q(t)x(t) + u(t)>R(t)u(t).

• Convex formulation: Let Z be the constant shifting matrix,

min
ΦX ,ΦU

f (ΦX ,ΦU ) =

∥∥∥∥diag(Q1/2,R1/2)

[
ΦX
ΦU

]
Σ1/2

∥∥∥∥2

F
,

s.t.,
[
I − ZA −ZB

] [ΦX
ΦU

]
= I.


