Nonvolatile programmable silicon photonics based on phase-change materials

Zhuan Fang1, Rui Chen1, Jiajiu Zheng3, Abhi Saxena1, Johannes E. Froeh1, Changming Wu1, Shifeng Zhu2, Peipeng Xu3, Asir Intisar Khan4, Kathryn M. Neilson3, Jonathan Doylend5, Sanchit Deshmukh6, Eric Pop3, Scott Dunham1,2, Mo Li1,2 and Arka Majumdar1,2

We demonstrate nonvolatile electrically tunable silicon photonics switches based on PIN diode and graphene heater. Emerging PCMs Sb₂Se₃ and Sb₃S₇ are further explored for ultra low-loss operation from the visible to near IR. Reconﬁgurable silicon photonics
- Thermo-optic / electro-optic effects
- Challenges: small tuning, volatile → large footprint, energy consumption
- Phase-change materials (PCMs)
 - High optical contrast (Δn > 1) between amorphous and crystalline states
 - Nonvolatile ~10 years
 - Fast (ns), low-energy (fJ/bit), reversible switching with high cyclability (10¹⁰)
 - Excellent scalability

Highlights
- A low-loss, compact, nonvolatile, programmable Si photonics platform.
- High endurance with cyclability > 1000
- Ultra low switching energy down to 8.7aJ/nm³
- A low-loss phase shifter enabled by Sb₃S₇
- Applications in microwave photonics, data centers, neural networks, quantum information processing ...

Photonics Switches based on PIN microheater

- Design and fabrication
 - 120 nm partially etched WGs
 - Heavily doped (10¹⁸ cm⁻³) PIN junctions, 200 nm away from ribs
 - Near-zero extra loss is achieved after doping
 - Encapsulated by 40 nm ALD Al2O3

- Performance characterization
 - Rectiﬁcation IV curve (GST not in the circuit)
 - Reversibly switched with a high extinction ratio >10 dB over a broad bandwidth
 - High cyclability: >500 cycles

- Operating principle
 - A 5-µm-long switching unit with 10 nm GST
 - Reset: 7 V (~110 mW), 100 ns
 - Set: 3.5 V (~10 mW), 50 µs (30 µs falling edge)

- Design of broadband 2x2 switches:
 - Middle waveguide used to circumvent the high crystalline GST loss

Low-loss Sb₃S₇ on silicon microrings

- Wide bandgap PCM Sb₃S₇ (SbS)
 - Broadband transparency from 610nm to near IR
 - Zero loss in amorphous state and 0.16dB/um in crystalline state near 1550nm, almost 50 times smaller than that of cGST

- Electrical actuation of 8 µm Sb₃S₇ by an integrated ITO heater
 - No observable resonance 1550nm, 0.05dB insertion loss
 - 0.17π phase modulation desirable for phase shifters!

Graphene heater for ultra-low energy switching

- Design and fabrication
 - Planarized SOI waveguides
 - ALD Al2O3 spacer between graphene and PCM
 - Encapsulated by 40 nm ALD Al2O3
 - Near Zero loss induced by the graphene (~0.047dB/um)
 - Compatible with dielectric platforms e.g., Si:Ni

- Performance characterization
 - Broadband switching based on GST and phase shifter enabled by Sb₃S₇
 - Ultra-low switching energy density per bit ~8.7aJ/nm³
 - Energy efficiency approaching fundamental limit 1.2 aJ/bit
 - High cyclability: >1,000 cycles

Acknowledgements: This work is funded by SRC grant 2017-I0-2743, NSF-1640988, NSF-2023509 , ONR-YIP Award, NSF-EBF-1640988, AFOSR grant FA9550-17-C-0277, and UW Royalty Research Fund. Industry interaction: Intel.