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MOTIVATION AND GOAL

A big assumption of learning theory: Training and test data are
drawn from a fixed distribution D.

However, in practice, ML models are deployed in ecosystems with many
other agents, and they impact each other’s data.
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requirements
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In the above, Cal and UW affect each other’s data because their posted
admission requirements influence joint applications.

Problem formulation
• Model problem as N-player game. Each player i ∈ {1, . . . , N} solves

min
xi∈Xi

Li(xi, x−i) where Li(x) := E
zi∼Di(x)

ℓi(x, zi). (1)

• Data observed by any agent depends on choices made by all agents.

• A tuple of learned parameters (x∗1, . . . , x
∗
n) ∈ X is a Nash Equilibrium

for G = (L1, . . . ,LN) if, for each i ∈ [N ],

x∗i = argmin
xi

Li(xi, x
∗
−i) (2)

Goal Design algorithms that can reliably find the Nash strategy for any
player with few iterations.

SETUP AND ASSUMPTIONS

Static game Any vector y ∈ X induces a static game (without perfor-
mative effects) G(y) wherein the distribution for player i is fixed at Di(y):

min
xi∈Xi

Ly
i (xi, x−i) where Ly

i (xi, x−i) := E
zi∼Di(y)

ℓi(xi, x−i, zi). (3)

Assumption 1 (Convexity and smoothness). There exist α > 0 and
βi > 0 such that for each i ∈ [n]: (i) ∀y ∈ X , the game G(y) is α-
strongly monotone. (ii) Each loss ℓi(xi, x−i, zi) is C1-smooth in xi and
the map zi 7→ ∇iℓi(x, zi) is βi-Lipschitz continuous for any x ∈ X .

Assumption 2 (Lipschitz distributions). For each i ∈ [n], there exists
γi > 0 satisfying

W1(Di(x),Di(y)) ≤ γi · ∥x− y∥ for all x, y ∈ X .

In this case, we define the constant ρ :=
√∑n

i=1(
βiγi
α )2.

MONOTONICITY

Assumption 3 (Smoothness of the distribution). For each index i ∈ [n] and point
x ∈ X , the map ui 7→ Ezi∼D(ui,x−i) ℓi(x, zi) is differentiable at ui = xi and its
derivative is continuous in x.

Theorem 1 (Monotonicity). Suppose that Assumptions 1–3 hold, and that we are
in the regime ρ < 1

2 and the map x 7→ Hx(y) is monotone for any y. The game
(1) is strongly monotone with parameter (1− 2ρ)α.

ALGORITHMS AND GUARANTEES

Derivative Free Method
Sample vti ∈ Si
Sample zti ∼ Di(x

t + δvt)

Set xt+1i = proj(1−δ)Xi

(
xti − ηt

di
δ
ℓi(x

t + δvt, zti)v
t
i

)
 . (4)

Here, Si denotes the unit sphere with dimension di.

Proposition 1 (Informal). Under reasonable smoothness and bounded variance
assumptions, algorithm (4) with appropriately chosen parameters δ and ηt will
find a point x satisfying E[∥x− x⋆∥2] ≤ ε after at most O(d

2

ε2) iterations.

The above rate is usually prohibitively slow in practice.

Stochastic Gradient Method
Parametric assumption on distribution family Let ζi ∼ Pi be sampled from
a fixed distribution with mean µi and covariance Σi for each i. Ai ∈ Rmi×di and
A−i ∈ Rmi×d−di are matrices with d =

∑N
i=1 di and m =

∑n
i=1mi.

xi ∼ Di(xi, x−i) ⇐⇒ zi = ζi + Aixi + A−ix−i.{
Sample zti ∼ Di(x

t)

Set xt+1i = projXi

(
xti − ηt · wi(x

t, zti)
)} . (5)

Theorem 2 (Informal). Under α-strong monotonicity, the above parametric as-
sumption, and simple smoothness and noise assumptions on D, a single step of
the stochastic gradient method (5) with any constant η ≤ α

2L2 satisfies

E[∥xt+1 − x⋆∥2] ≤ 1

1 + αη
E[∥xt − x⋆∥2] + 2η2σ2

1 + ηα
, (6)

Adaptive Gradient Method

1. Model environment: Estimating Âi and Â−i to obtain D̂i.

2. Choose actions: Find the “approximate Nash" using gradient play, assuming
Di = D̂i.

Theorem 3 (Informal). Adaptive algorithm with appropriately chosen parameters
δ and ηt will find a point x satisfying E[∥x−x⋆∥2] ≤ ε after at most O(dε) iterations.

SIMULATIONS
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Fig. 1: Changes in revenue at Nash for both companies across 11 locations in Boston

• Simulate game between Uber and Lyft based on real data collected
in Boston, MA.

• Consider 11 locations across city where rides originate. Companies
adjust prices at each location,

• This affects the demand that they both experience. Demand zi seen
by company i is given by

zi = ζi + Aixi + A−ix−i

ζi is a fixed empirical distribution of demands from the dataset, xi and
x−i are the price adjustments from a nominal value by each company.
Ai ⪯ 0 and A−i ⪰ 0 are matrices that represent the price elasticities
of the rides.

• Company i’s loss is

ℓi(xi, zi) = −1

2
z⊤i xi +

λi

2
∥xi∥2,

• Changes in revenue from the real-world revenue at Nash are shown
in Figure 2.

• Distance from Nash of the iterates is shown in Figure 3. As expected,
DFO performs worse than adaptive or stochastic gradient methods,
which are comparable.

Fig. 2: Distance from iterates to Nash for each of the three algorithms


