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MOTIVATION AND GOAL

A big assumption of learning theory: Training and test data are
drawn from a fixed distribution D.

However, in practice, ML models are deployed in ecosystems with many
other agents, and they impact each other’s data.
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In the above, Cal and UW affect each other’s data because their posted
admission requirements influence joint applications.

Problem formulation

« Model problem as N-player game. Each player: € {1,..., N} solves
in Li(x;, x—;) where L;(z) = K li(z, 2). 1
arjnelg (x;, x_;) where L;(x) B (x, 2;) (1)

« Data observed by any agent depends on choices made by all agents.

* A tuple of learned parameters (z7,...,x") € X is a Nash Equilibrium
forG = (Lq,...,Ly) if, foreach i € [ N],
v = argmin L;(x;, " ;) (2)

o)

Goal Design algorithms that can reliably find the Nash strategy for any
player with few iterations.

SETUP AND ASSUMPTIONS

Static game Any vector y € X" induces a static game (without perfor-

mative effects) G(y) wherein the distribution for player i is fixed at D;(y):
min LY(x;,z_;)  where L (x,x) = E li(z, x4 2). (3)
x,EX; 2i~D;(y)

Assumption 1 (Convexity and smoothness). There exist « > 0 and

B; > 0 such that for each i € |n]: (i) Vy € X, the game G(y) is a-

strongly monotone. (i) Each loss {;(x;, x_;, z;) is C'-smooth in x; and

the map z; — Vl;(x, z;) is B;-Lipschitz continuous for any x € X.

Assumption 2 (Lipschitz distributions). For each i € |n], there exists
v, > 0 satisfying

Wi(Di(x), Diy)) < i+ [z =y
In this case, we define the constant p := \/ S (B2,

for all x,y € X.
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MONOTONICITY

Assumption 3 (Smoothness of the distribution). For each index i € [n] and point
v € X, the map u; — E. pu,. )0z, 2) is differentiable at u; = x; and its
derivative is continuous in x.

Theorem 1 (Monotonicity). Suppose that Assumptions |1-3 hold, and that we are
in the regime p < % and the map x — H.(y) is monotone for any y. The game
(1) is strongly monotone with parameter (1 — 2p) c.

ALGORITHMS AND GUARANTEES

Derivative Free Method

Sample v} € S;
Sample 2! ~ D;(a" + 6v')

e (s~ 0,

Here, S; denotes the unit sphere with dimension d;.

Proposition 1 (Informal). Under reasonable smoothness and bounded variance
assumptions, algorithm (4) with appropriately chosen parameters 6 and n; will
find a point = satisfying E[||x — x*||*] < ¢ after at most O(f—z) iterations.

The above rate is usually prohibitively slow in practice.

Stochastic Gradient Method

Parametric assumption on distribution family Let (; ~ P; be sampled from
a fixed distribution with mean 1; and covariance ¥, for each 7. A; € R™>% and
A_; € R™*4=4 gre matrices with d = 3 d; and m = S, m.

€XT; ~~ DZ(QZZ, QZ_Z') <— Z; = CZ + Az, + Ao

Sample 2 ~ Di(x') \> (5)
\Set 33?1 = Projy, (l‘ﬁ — 1y - w2, Zf)) |

/

Theorem 2 (Informal). Under o-strong monotonicity, the above parametric as-
sumption, and simple smoothness and noise assumptions on D, a single step of
the stochastic gradient method (5) with any constantn < 57 satisfies

1 t

Eflz"" — 2*["] < 7 ap I — @[] , (6)

Adaptive Gradient Method

1. Model environment: Estimating AZ- and fl_i to obtain 152-.
2. Choose actions: Find the "approximate Nash" using gradient play, assuming
D, =D,.

Theorem 3 (Informal). Adaptive algorithm with appropriately chosen parameters
0 and ; will find a point x satisfying E||x —2*||?] < ¢ after at most O(2) iterations.
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Fig. 1: Changes in revenue at Nash for both companies across 11 locations in Boston

e Simulate game between Uber and Lyft based on real data collected
In Boston, MA.

« Consider 11 locations across city where rides originate. Companies
adjust prices at each location,

* This affects the demand that they both experience. Demand z; seen
by company 1 is given by

Zp = C@ + AZIZ + A_Z{IZ_Z'

(; I1s a fixed empirical distribution of demands from the dataset, x; and
x_; are the price adjustments from a nominal value by each company.
A; < 0and A_; = 0 are matrices that represent the price elasticities
of the rides.

« Company 7’s loss is
1 Y
bz, 2) = —=2"z; + =||z;
« Changes in revenue from the real-world revenue at Nash are shown
in Figure 2.
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 Distance from Nash of the iterates is shown in Figure 3. As expected,
DFO performs worse than adaptive or stochastic gradient methods,
which are comparabile.
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