
Power system stability requires balancing power supply with power 
demand [1].
Ø Power imbalance causes frequency deviations
Ø Frequency deviations can lead to loss of stability or tripping of

protective equipment
Ø Challenges: fluctuating input from renewable energy sources, hard 

limits on frequency deviations, actuation constraints, nonlinearities, 
computational power

Ø Opportunities: flexible energy input from inverter-based resources
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Power systems are transitioning from synchronous generator-based to 
inverter-based.
Ø More flexibility, less inherent stability
Ø Enables and necessitates new control techniques
Ø Increasing complexity à difficult to derive good policy
Ø Reinforcement learning (RL) can generate effective policies from data
Ø However, it is difficult to enforce safety constraints on learned polices 

or during training
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We use set-theoretic control techniques [2] to ensure that a policy trained 
using deep RL guarantees constraint satisfaction.
Ø Dynamics: 𝑥!"# = 𝐴𝑥! + 𝐵𝑢! + 𝐸𝑑!
Ø Constraints: 𝑥! ∈ 𝑋, 𝑢! ∈ 𝑈 (𝑋,𝑈 compact polytopes)
Ø Unknown-but-bounded disturbances/nonlinearities: 𝑑! ∈ 𝐷
Ø Robust control invariant set: 𝑆 = {𝑥 ∈ 𝑋: ∃ 𝑢 ∈ 𝑈 ∣ 𝐴𝑥 + 𝐵𝑢 + 𝐸𝑑 ∈ 𝑆, ∀ 𝑑 ∈ 𝐷}
Ø Safe action set: Ω 𝑥 = {𝑢 ∈ 𝑈: 𝐴𝑥 + 𝐵𝑢 + 𝐸𝑑 ∈ 𝑆, ∀ 𝑑 ∈ 𝐷}

Goal: constrain policy to safe action set without solving projection (too slow)

Ø We establish equivalence of any two convex, compact sets by 
constructing a closed-form, differentiable bijection between them

Ø We use this bijection to equate the unit hypercube 𝐵$ with the safe 
action set Ω 𝑥!

Ø It is easy to constrain the output of a neural network to 𝐵$ using tanh 
activation functions

Ø We train the neural network using standard policy gradient algorithms

The structure of the policy comprises:
Ø 𝐾𝑥! , a safe linear feedback used for numerical stability
Ø Ω 𝑥! , the set of safe actions from state 𝑥!
Ø 𝜓% 𝑥! , a feedforward neural network with parameter 𝜃 and tanh 

activation functions in the output layer
Ø A closed-form, differentiable gauge map that takes the outputs of 𝜓%

and maps them one-to-one to elements of Ω(𝑥!)

The test system is a 9-bus power 
system with 3 synchronous 
generators, 3 uncertain loads, and 
3 controllable energy storage
systems. The power system
dynamics are modeled using the
linearized swing equations and DC
power flow equations. At each 
time step, the stage cost is given 
by

𝑙 𝑥! , 𝑢! = ||𝑥!||& + ||𝑢!||&.

Compared performance of our method to a policy network trained with a 
soft penalty on constraint violations. Our proposed method demonstrated: 

Ø Better rewards
Ø No constraint violations throughout training
Ø Constraint satisfaction during testing

Throughout training, the proposed safe RL
policy avoids constraint violations by keeping 
the rotor angle deviations of all generators 
below their allowed limits. The baseline policy 
trained using a constraint violation penalty 
only learns to satisfy the constraints in the 
long run. 

Even after training, there exist initial
conditions for which the baseline RL policy 
does not always satisfy the constraints of the 
system. 

Since the safe RL policy inherits the safety 
guarantees from a safe linear feedback 
controller, we compared the costs 
accumulated along a trajectory to show that 
the flexibility of the RL policy enables lower 
operating costs. 

Future work:
Ø Investigate robustness 

of learned policies to 
topology changes

Ø Apply the technique to 
other problems in 
power systems control 
and optimization

Ø Investigate multi-agent 
setting
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