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« We present neural nano-optics, offering a path to ultra-small imagers, by jointly
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learning a metasurface optical layer and neural feature-based image reconstruction. reconstruction. [3] = |
Compared to existing state-of-the-art hand-engineered approaches, neural nano- « We extend meta-optics to the long-wave infrared (LWIR) regime and demonstrate * We designed and fabricated 3 " - |-
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thermal emission. We showed that even with the strongly chromatic nature of the P20 LY HE slalds=0l=dnls 2 Gani
metalenses, we can perform ambient light imaging, primarily due to the lack of art meta-optics (see right).
wavelength discrimination in the sensor, as is the norm for an RGB-camera in the
visible [2].
« The ultracompact camera we propose uses metasurface optics at the size of a
coarse salt grain and can produce crisp, full-color images on par with a conventional « the EDOF metasurfaces demonstrate an impressive ability to maintain a highly
compound camera lens 500,000 times larger in volume. invariant PSF across a large spectral range. The imaging results as well as the SSIM

calculations indicate that EDOF metasurfaces significantly outperform the
standard metalens in full-color imaging. The log-asphere and shifted axicon
designs both demonstrate the highest optical bandwidth for imaging.
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' thus change the transmission coefficient (both amplitude and phase) of the incident
| light. We perform rigorous coupled-wave analysis (RCWA) to map the nanopost width
to the respective transmission coefficient shown on (b).

e Our optimized meta-optic design meets several criteria that were not met by
previous methods. The nano-camera allows us to capture full-color images over a
wide field-of-view (see below)

e our aperture is the largest demonstrated for meta-optics at 500 microns, allowing
for increased light collection. Our optic also exhibits a low f-number, allowing for the
optic to be placed extremely close to the camera sensor.

« No previous metasurface has demonstrated imaging with this combination of large
aperture, large field-of-view, small f-number, and large fractional bandwidth.

Previously, achieving any one of these metrics came at the cost of some other, for

example, one could achieve a low f-number by sacrificing the aperture size.

« We are the first to
demonstrate LWIR
imaging using the
simple metalens "in the
wild", outside of the
laboratory
environment.
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