Automatic Load-pull Tuner

STUDENTS: JIANING HE, RITHU MANOHARAN, STEFAN SMIGOC

Problem Statement

- Customers who use Access Laser RF circuits face the following problems:
 - Have various cable types and these are not always compatible.
 - Access Laser RF engineers had to manually test multiple different loads.
 - Sometimes customers fry the circuit with their improper loads.
- Our project goal is to design and create a circuit that will simulate various loads and a GUI to control this circuit and save associated oscilloscope waveform data that will contain the necessary data for the RF engineers at Access Laser.

Requirements

- This board design will develop 72 different combinations which are created by 3 cables and 4 load resistance on the Smith chart.
- We need to create a variable load circuit and a software program to control:
 - The digital interface (sets the different load combinations).
 - GUI displaying Smith Chart information for various loads.
 - Gathering and saving voltage/current data for each load from an oscilloscope using ethernet communication.

Results

- Development of a current sense circuit to shut off power to the RF amplifier in case of overcurrent.
 - Less than 100ns response time to prevent damage to amplifier circuit.
 - Latch at 1A overcurrent and remain latched until a button press delatches.
- Further development of oscilloscope triggering.
 - Making sure acquisition of data is synchronized with the trigger signal sent by the digital interface every time a load is changed (RF_Start signal that triggers the RF board).
 - Confirm translated data from waveform transfer matches actual data
 - Record length of 20M waveform points.
- PCBs printed and assembled for Core Circuit and Pulse Limit circuit
- The relays were able to switch with the digital input from an arduino.
- Transferred raw data from oscilloscope measuring Access Laser's RF board to software program using ethernet.
- Successfully measured the RF signal using a network analyzer through various load configurations.
- Pulse Limit circuit was able to output a pulse width of 1.5μs to 12.92μs by rotating the switch.

Future Work and Acknowledgments

- Oscilloscope Ethernet Communications
 - The purpose is to switch the relay between two positions via digital inputs from the digital interface to configure the resistance/impedance combination loads to the RF output.
 - It can also trigger the RF amplifier to output a signal through the BNC connector.
 - Another accomplishment is to attenuate the load voltage through load capacitor and load resistors.

Oscilloscope Ethernet Communications

- Connect to Tektronix oscilloscope using a National Instruments remote ethernet communications driver called NI-VISA.
- Voltage/Current data is returned in a raw format known as “digitizing levels” and must be translated using a formula.
- 1000 record length of data

GUI

- Allows user to select serial port for digital interface communications.
- Allows user to select location to save waveform data.
- Displays impedance information for 72 loads through Smith Chart.
- Allows user to start automatic load testing while showing status of test and the current load being tested.

Pulse Limit Circuit

- The purpose is to limit the incoming pulse from the digital interface to have 1 second between each pulse with 1-10 μs pulses. In the case of reading a constant high signal from the digital interface, the pulse width circuit will fix the signal to a pulse.
- Without the pulse limit board, the triggering signal is not monitored and will potentially burn the RF amplifier.

Pulse Limit Circuit

- Connect to Tektronix oscilloscope using a National Instruments remote ethernet communications driver called NI-VISA.
- Voltage/Current data is returned in a raw format known as “digitizing levels” and must be translated using a formula.
- 1000 record length of data

Faculty Advisor: Sam Burden
Graduate Student: Joseph Sullivan
Industry Advisors: Iris Tsai, Gordon Wood, Shahab Shahdoost

References