The HPS Autopilot Capstone is an ongoing project to develop a roll control module that will:
- Keep the submarine stable at high and low speeds
- Improve the handling experience of the submarine

Phase Three Requirements
- Test design for implementation readiness
 - Investigate the hardware's functionality, performance, and reliability
 - Evaluate the control design's calculations and performance
- Document suggestions for design revisions
- Record test data and outcomes

Prototype Autopilot Module
- Completed by previous year's team
- Two-board system to measure fixture rotation relative to a point

Three phase test plan:
- Functionality: Does the device function at a baseline level
- Performance: Does the device function according to specifications
- Reliability: Does the device maintain accurate results under real-world conditions

Also required: methodology to translate rotation of gimbal to rotation of a reference point
- Calculated using homogeneous transforms

Attitude and Heading Reference System:
- Utilizes sensor fusion to estimate roll, pitch, and yaw
- Three sensors need to each be tested in the IMU (Internal Measurement Unit)
 - Gyroscope
 - Accelerometer
 - Magnetometer

Hardware Test Plan
- Testing revealed significant error in yaw measurement
- Magnetometer calibration was determined the most likely cause

Hardware Test Results
- Testing revealed significant error in yaw measurement
- Magnetometer calibration was determined the most likely cause

Hardware Test Plan
- Prototype Autopilot Module completed by previous year's team
- Two-board system to measure fixture rotation relative to a point

HARDWARE / SOFTWARE
- Module is not ready for implementation in a submarine setting
- Module cannot accurately measure yaw angles
- Physical device is prone to pins breaking off in headers and the battery pack is cumbersome to remove

Future teams will need to perform:
- Partial redesign of PCB
- Redesign of battery casing

Multiple options for AHRS redesign:
- Correct magnetometer error
 - Fix magnetometer calibration procedure to obtain better raw data
 - Utilize specialized calibration software and integrate code libraries for the IMU (Internal Measurement Unit)
- Use alternate methods to obtain yaw values
 - Position second module's roll/pitch axis to line up with main module's yaw axis and feed in data

Discussion and Future Work
- Controller does decrease roll error but struggles to reach steady state in under 20 seconds with normal use case body velocities (under about 2.5 m/s). There is room for improvement in controller design.

Future teams may want to look into:
- Simulink's PID tuner
- Linear quadratic regulator controls (LQR)
- Further refining hydrodynamic equations
- Automating force and moment calculations using Computational Fluid Dynamics (CFD)

CONTROLS
- Module is not ready for implementation in a submarine setting.
- Module cannot accurately measure yaw angles.
- Physical device is prone to pins breaking off in headers and the battery pack is cumbersome to remove.

Future teams will need to perform:
- Partial redesign of PCB
- Redesign of battery casing

MULTIPLE OPTIONS FOR AHRS REDESIGN:
- Correct magnetometer error
 - Fix magnetometer calibration procedure to obtain better raw data
 - Utilize specialized calibration software and integrate code libraries for the IMU (Internal Measurement Unit)
- Use alternate methods to obtain yaw values
 - Position second module's roll/pitch axis to line up with main module's yaw axis and feed in data

References and Acknowledgements
- Faculty: Cassie Riel, Ben Maurer, Sam Burden
- Undergraduate: Cole Helms

ADVISORS: Eric Jones

INDUSTRY MENTORS: Nick Valladarez, Khoa Tran, Ryan Edwards, Joseph Reck, Ryck Thompson

SPONSORS: Booz Allen Hamilton