In 2018, MIT found that facial recognition tools from large public companies had large discrepancies in face matching rates among sex and historical ethnic subgroups. Darker-skin female faces were the least reliably recognized among all sex and historical ethnic subgroups.

Types of Bias

1. Sampling bias: a mismatch between the demographic makeup of a dataset and the population it was sampled from.
2. Historical bias: derived from previous generational biases that have to be manually corrected.
3. Representational bias: a bias within a population itself.
4. Application bias: a mismatch between the training dataset and the testing dataset.
5. Algorithmic bias: directly from the nature of the algorithm.

Sampling Bias Tool

- Our tool counts the number of faces in each sex and historical ethnic group then uses a chi-square goodness of fit test for a multinomial PDF to ensure the sample is representative of the population it was sampled from (right lower).
- It analyzes a training dataset and outputs a bar graph showing the number of faces in each subgroup to display the bias (left).
- The bias score determines if a particular subgroup was oversampled or undersampled in the dataset, relative to the population.

Application Bias Tool

- Our tool checks that the training and testing datasets are similar by computing a cumulative angular shift of the principal components of the training set relative to the testing set (lower).
- Individual test samples are projected onto the principal components of the training set and the bias score is the outlier probability based on analyzing the quantities (right).

Algorithmic Bias Tool

- Our tool implements Equalized Odds metric [2]. It quantifies the cumulative bias in an AI model's output (may include biases induced from the dataset).
- A face recognition model satisfies this metric if all subgroups have equal true positive and false positive rates.
- The bias score is the maximum absolute difference between the marginal and conditional output densities.

Historical Bias Tool

- Our tool assigns a BRISQUE image quality score to each photo and finds the average image quality for each sex and historical ethnic subgroup (lower).
- It analyzes a training dataset and outputs a pie chart showing the average image qualities for each subgroup to display the bias (right).
- The bias score is determined by calculating the largest difference between the average image qualities of any two subgroups.

The Effects of Biased Data on an Algorithm

- This experiment analyzes the relationship between algorithmic bias and the bias in a training dataset.
- We purposely injected bias into a dataset by adding artifacts to degrade quality and re-sampling certain subgroups.
- We plot a graph of the algorithmic bias, as measured by Equalized Odds, against the injected bias levels.
- ResNet and VGG16 models are used for the experiments, along with a cosine similarity score to match the extracted facial features (below left).
- The results are intuitive, i.e the bias in the model's output positively correlated with the bias in the dataset (below right).

Policy Recommendations

- When an AI decision will result in an action of consequence (such as an arrest) it should be reviewed by a human first to ensure the decision was made correctly.
- AI practitioners should train models with datasets that use self-reported labels so that models don't incorrectly infer identities and thus learn based off of incorrect attributes.
- Training datasets and AI models should exhibit bias under the limits set by our project to ensure that they only carry negligible bias toward any group.

Future Work, References, and Acknowledgments

- Improving computation speed for analyzing large-scale datasets.
- Building tools to eliminate or mitigate bias after detecting it.
- Further experimentation to explore other ways that biased datasets can affect bias in an algorithm.