

Interface

Remote ID Standard

- Remote ID is a regulation instituted by the FAA that requires unmanned aerial systems (UAS), drones to **broadcast** their location, identity, and status via radio
- Remote ID information can be broadcasted using Bluetooth and WIFI
- These messages can be monitored by authorities and nearby air traffic

ℋ

Smart

Phone

Receiver

System Architecture

Software Design

Based on ARM Mbed:

- Modern C++, highly
- modular design
- Free, open-source RTOS
- Supports many targets, easy to port
- Community support Modular and portable

software design:

- Easy to test, maintain, and extend
- Easy to adopt to new hardware, resilient to supply chain disruptions

Task based architecture

- Producer/consumer model
- Separation of concerns, highly modular
- Deterministic timing with Mbed RTOS

ELECTRICAL & COMPUTER ENGINEERING

ADVISORS: MATTHEW HAMILTON, JOHN REECE SPONSORS: SAGETECH AVIONICS

UNIVERSITY of WASHINGTON

Broadcast Remote ID Transceiver with Traffic Display

STUDENTS: JALEN BAUER, RYAN HALLGRIMSON, KING HONG, MARCO XU

Independent GPS Receiver

- GPS module acquires geolocation data of the device with update rate once per second
- GPS task decodes and extracts location information required for the Remote ID data
- GPS task formats a message package and sends the package to the GPS message queue for the Remote ID task to process

Remote ID Encoding and Decoding

- The Remote ID messages have a standardized format they fit into
- Location, identification, etc are encoded into the Open Drone ID format messages
- The encoded messages will be sent over Bluetooth or WIFI
- We used opendroneid-core-c standardized library for encoding

Drone/Transmitter Media Framing (Wi-Fi, BT, etc) ODID Encoded Data Encode **F** Functions **ODID** Nominal Data Transmit Data Source

Bluetooth Broadcasting

- Remote ID messages are transmitted using Bluetooth advertisement beacons (Bluetooth GAP)
- Compatible with both Bluetooth 4 (legacy) and Bluetooth 5 (extended)
- The Bluetooth firmware encodes then sends out both types of beacons
- The Remote ID receivers monitor the advertisement channels

Legacy Advertisement Frame							
Preamble (1 Byte)	Acc Addr (4 Bytes)	PDU Hdr (2 Bytes)	AD Addr (6 Bytes)	AD Len, Type (2 Bytes)	16-bit UUID	App Code	
0xAA	8E89BED6h	20h,25h	<public></public>	1Eh,16h	0xFFFA	0x0D	0x

- Design a one-piece PCB with minimal size that encapsulates all modules
- Integrate Mavlink protocol for inflight communication with flight controller of the drone
- Ability to broadcast over WIFI

Hardware Design

[1] Open Drone ID, 11-Mar-2019. [Online]. Available: https://www.opendroneid.org/. [Accessed: 20-May-2022]. [2] ASTM standard F3411, 2019, "Standard Specification for Remote ID and Tracking", ASTM International, 2019 Faculty Mentor : John Reece Industry Mentor : Matthew Hamilton Teaching Assistant : Shruti Misra

