
01

• A point of interest is a specific physical location, which someone may find
interesting. Examples: Restaurants, retail and grocery stores, gas stations etc.

• Telenav provides GPS satellite navigation, local searches, entertainment for
automotive navigation.

• Points of interest are provided to Telenav by different vendors. As a result, many
provided points of interest are different in title, address, etc., but are duplicates,
and vice versa

• Examples: POI 1: “Costco”, POI 2: “Costco Wholesale” TRUE (duplicates)
 POI 1: “Costco”, POI 2: “Costco Gas” FALSE (non-duplicates)

• Objective:
○ Develop and integrate into Telenav data processing pipeline a solution to find

and remove POI duplications from Telenav datasets
○ Machine Learning model prediction accuracy above 95%
○ Java API library with a function entrypoint and Command Line Interface for

analyzing large POI datasets

Background and Objectives Machine Learning Research

Pre-processing and Features

• The overall workflow involves three large steps. The first is data pre-processing to extract
features such as title/address similarity, physical distance, category relationships, etc.

• The second is the prediction made by the machine learning model using the extracted
features. The third is the hard-coded rulebook that overrules model decisions based on
company policy.

Command Line Interface

• One of our supporting deliverables is to implement a command line interface for Telenav to
perform offline testing

• CLI request a CSV input file with POI pairs and the given decision of being duplicates
• For each POI pair, CLI triggers a call to the Java API function to determine if the POIs are

duplicates
• Outputs the accuracy of the model based on number of decisions made by the model that

matches the given decision
• Outputs a text file with inference results for each API call named output.csv

Java Library Implementation

Results

• Overall, we were able to meet and in fact exceed accuracy expectations.
• The final accuracy scores with all of the features and rulebook for the API library are:

○ Overall Accuracy = 98.3%
○ Positive Accuracy = 97.7%
○ Negative Accuracy = 98.7%

• Provided Telenav with Python Jupyter Notebook to further train the model
based on new data, parameters, etc.

• Add new preprocessing steps to provide more insight to model for inference
• Analyze the text similarity scoring system for non-english native POI titles for

improvement on difficult edge cases
• Utilize more information from the POI attributes to either rule out or improve

positive accuracy

Future Development Ideas

STUDENTS: AADITYA DESAI, ADIT JHA, BING SYUAN WANG, KHOA TRAN

FACULTY MENTOR: Karthik Mohan

INDUSTRY MENTOR: Akira Zhang

 SPONSORS: TELENAV
 ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT, UNIVERSITY OF WASHINGTON

POINT OF INTEREST
 DEDUPLICATION

Accuracy
Total Accuracy Positive Accuracy Negative Accuracy

Training Validation Training Validation Training Validation

Model

Logistic Regression 95.7% 95.6% 83.3% 82.1% 97.6% 97.6%

Random Forest 97.4% 96.1% 88.6% 82.4% 98.8% 98.1%
Decision Tree 96.1% 95.8% 84.4% 82.1% 97.9% 97.8%
Extra Tree 96.8% 96.0% 86.5% 81.5% 98.4% 98.0%
Bagging 99.2% 95.8% 96.5% 79.7% 99.6% 98.1%
Bagging + KNeighbors 96.9% 95.5% 86.3% 79.8% 98.5% 97.8%
Bagging + SVC 95.6% 95.5% 78.7% 77.7% 98.1% 98.1%
SGD 95.8% 95.7% 81.8% 80.1% 97.9% 97.9%

• The Java API Library is the main deliverable for Telenav as it will serve as the basis for
executing deduplication analysis at scale.

• The grouping function kicks off by first analyzing whether the POI objects contain any
category pairs that are considered non-pairs by the built rulebook.

• If the rulebook passes, the function performs data normalization to prepare the POI
attributes for feature analysis.

• A series of helper functions are called which calculate the feature parameter values
used for the Random Forest model.

• The library will then return true or false for the POI comparison if the Random Forest
model has a true confidence score
of at least 50%.

• Since our training target is categories
and the training data has been
labeled, we use the classification
model to train the data.

• After trying many different models, we
finally settled on the Random Forest
model and used ROC, AUC to validate
and tune hyperparameters and
accuracy.

• Once the Python model is trained, we
convert it to a Java model to be used.

 13

