POINT OF INTEREST
DEDUPLICATION

« A point of interest is a specific physical location, which someone may find
interesting. Examples: Restaurants, retail and grocery stores, gas stations etc.

- Telenav provides GPS satellite navigation, local searches, entertainment for
automotive navigation.

« Points of interest are provided to Telenav by different vendors. As a result, many
provided points of interest are different in title, address, etc., but are duplicates,
and vice versa

« Examples: POI 1: “Costco”, POI 2: “Costco Wholesale” :>TRUE (duplicates)

POI 1: “Costco”, POI 2: “Costco Gas”:>FALSE (non-duplicates)

* Objective:

o Develop and integrate into Telenav data processing pipeline a solution to find
and remove POI duplications from Telenav datasets

o Machine Learning model prediction accuracy above 95%

o Java APl library with a function entrypoint and Command Line Interface for
analyzing large POl datasets

« The overall workflow involves three large steps. The first is data pre-processing to extract
features such as title/address similarity, physical distance, category relationships, etc.

» The second is the prediction made by the machine learning model using the extracted
features. The third is the hard-coded rulebook that overrules model decisions based on
company policy.

/POIObjects/

. — s ' -

Address Decode
(separate parts of
address)

POI Categories Distances

POl Name/Title

Matching Result

False

W

| b o l

State, City, County, Categories

Relationship

Contain Check True

Yes

Street Address, Apt
or Unit, Zip code Rule Book
l 1 , J
Null Check Fuzzy Matching v— Y
\ Machi.ne / False / / True /
Learning
» Matching

« One of our supporting deliverables is to implement a command line interface for Telenav to
perform offline testing

« CLI request a CSV input file with POI pairs and the given decision of being duplicates

« For each POI pair, CLI triggers a call to the Java API function to determine if the PQOls are
duplicates

« Outputs the accuracy of the model based on number of decisions made by the model that
matches the given decision

« Qutputs a text file with inference results for each API call named output.csv

Welcome to the POI Duplication Detection API

Enter the relative path to the input POI data file:
src/main/resources/40k_training_data.csv

Total Number of POI : 39949

Total Number of POI that model decision match given decision: 39279

Total Model Accuracy : 0.9832286164860197
Positive Accuracy : 0.9771877574298207
Negative Accuracy : 0.9871731214829527

« Overall, we were able to meet and in fact exceed accuracy expectations.

» The final accuracy scores with all of the features and rulebook for the API library are:
o Overall Accuracy = 98.3%
o Positive Accuracy = 97.7%
o Negative Accuracy = 98.7%

TELENAV

* Since our training target is categories
and the training data has been

labeled, we use the classification

model to train the data.

+ After trying many different models, we o=
finally settled on the Random Forest

model and used ROC, AUC to validate
and tune hyperparameters and

accuracy.

* Once the Python model is trained, we

100 -

0.99 1

|
2 0971
0.96 -

0.95 1

0.94 1

convert it to a Java model to be used.

111111111111111

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

0123456 780910111213141516171819202122232425262725829303132333435363738394041424344454647484950
depth parameter

Total Accuracy Positive Accuracy Negative Accuracy
Accuracy
Training | Validation | Training | Validation | Training | Validation

Logistic Regression 95.7% 95.6% 83.3% 82.1% 97.6% 97.6%
Random Forest 97.4% 96.1% 88.6% 82.4% 98.8% 98.1%
Decision Tree 96.1% 95.8% 84.4% 82.1% 97.9% 97.8%
Model Extra Tree 96.8% 96.0% 86.5% 81.5% 98.4% 98.0%
Bagging 99.2% 95.8% 96.5% 79.7% 99.6% 98.1%
Bagging + KNeighbors | 96.9% 95.5% 86.3% 79.8% 98.5% 97.8%
Bagging + SVC 95.6% 95.5% 78.7% 77.7% 98.1% 98.1%
SGD 95.8% 95.7% 81.8% 80.1% 97.9% 97.9%

The Java API Library is the main deliverable for Telenav as it will serve as the basis for
executing deduplication analysis at scale.
The grouping function kicks off by first analyzing whether the POI objects contain any
category pairs that are considered non-pairs by the built rulebook.
If the rulebook passes, the function performs data normalization to prepare the POI
attributes for feature analysis.
A series of helper functions are called which calculate the feature parameter values
used for the Random Forest model.
The library will then return true or false for the POl comparison if the Random Forest
model has a true confidence score
of at least 50%.

HashMap<String, Object> paramMap = new HashMap<String, Object>() {

¥

/ /7
/ /
‘I' ’n

Map<String, Object> modelResults =

{

put("distance", distance);
put("fuzzy_title", levTitleRatio);
put("fuzzy_address", levAddressRatio);
put("contains_title", containsTitle);

put("contains_phone", containsPhoneNumber);
put("address_null", addressNull);
put("door_number_null", doorNumberNull);

(
(
(
(
put('"contains_cateogries", containsCategories);
(
(
(
(

put("categories_relationship", categoryRelationship);

= N/ o~ e ~ ﬂ g T ~n -f"r.‘ -~ o~ -
Execute Model Inference

RandomForestModel.predict(paramMap) ;

if ((double) modelResults.get("probability(true)") >= 0.50) {

}

return true;
else {
return false;

* Provided Telenav with Python Jupyter Notebook to further train the model
based on new data, parameters, etc.
« Add new preprocessing steps to provide more insight to model for inference
« Analyze the text similarity scoring system for non-english native POl titles for
improvement on difficult edge cases
 Utilize more information from the POI attributes to either rule out or improve

positive accuracy

