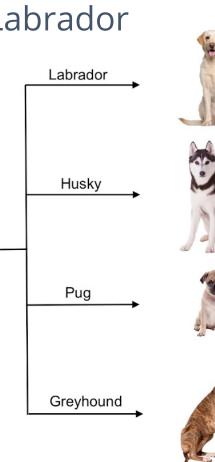


FINE-GRAINED OBJECT RECOGNITION USING WYZE CAM HSIANG-WEI HUANG, CONOR KNOX, TRINH NGUYEN, PRATHIBHA RAMACHANDRAN, RAVI SANGANI

Introduction

Object recognition is a computer vision problem for identifying objects in images or videos. There are two types of object recognition:

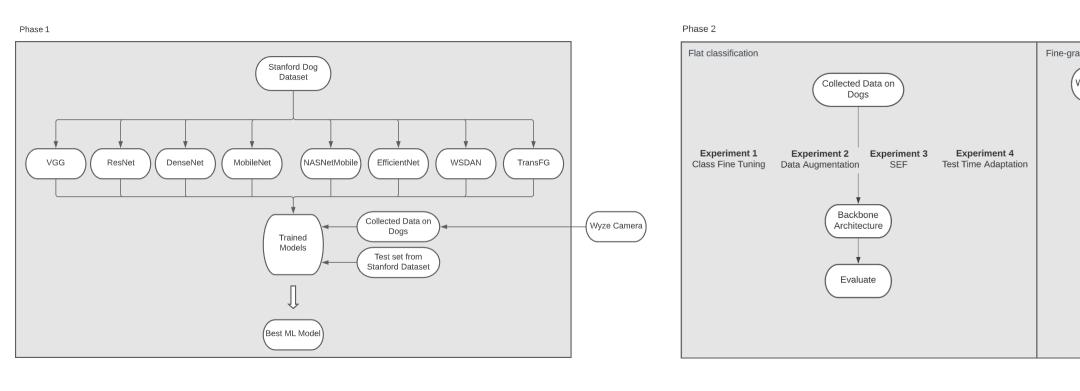
- Generic object recognition: dog vs. cat
- Fine-grained object recognition: Husky vs. Labrador



Challenges With Fined-Grained Recognition

Large intra-class variability

Modeling Solutions

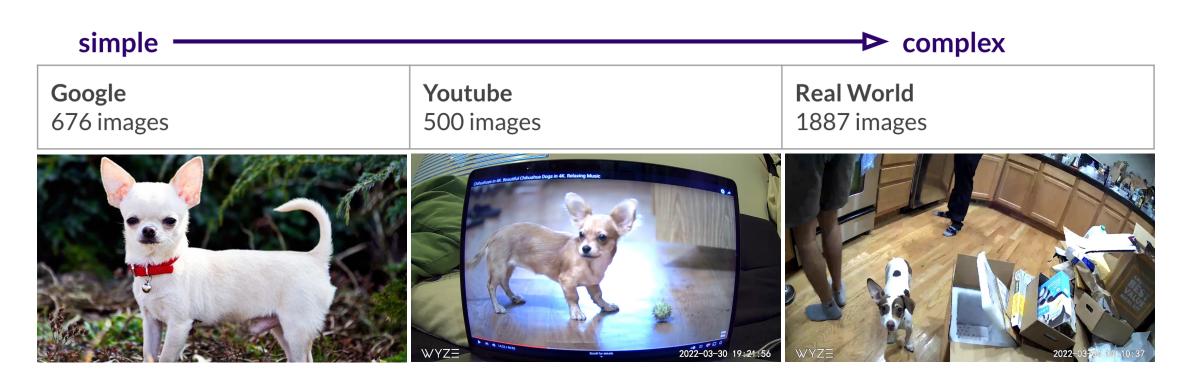


Dataset

Stanford Dog Dataset: public dataset for training purposes • Images of 120 different breeds for a total of 20,580 images

Our Datasets: custom datasets for testing purposes

- 3 datasets, each differs in image complexity
- Images of 25 different breeds for a total of 3,063 images



ELECTRICAL & COMPUTER ENGINEERING

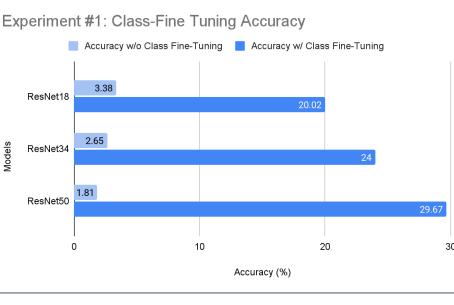
UNIVERSITY of WASHINGTON

Phase 1: Architecture Evaluation Results

Model	Accuracy on Stanford Dog Dataset (12,000 images, 120 breeds)	Accuracy on a subset of our Google Dataset (88 images, 10 breeds)	Accuracy on a subset of our YouTube Dataset (88 images, 10 breeds)	Accuracy on a subset of our Real-World Dataset (88 images, 10 breeds)
VGG16	66.2%	55.7%	20.5%	9.6%
VGG19	66.8%	59.1%	22.7%	9.6%
ResNet50	80.4%	81.8%	58.0%	11.4%
DenseNet121	75%	81.8%	60.2%	9.1%
Mobilenetv2	65.9%	72.7%	35.2%	6.8%
NASNetMobile	74.4%	75.0%	28.4%	9.6%
EfficientNet B0	77.1%	78.4%	56.8%	9.1%
TransFG	92.3%	81.8%	50.0%	22.7%

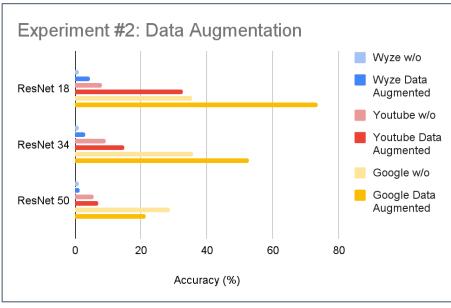
Results

Phase 2: Flat Classification Experiment Results

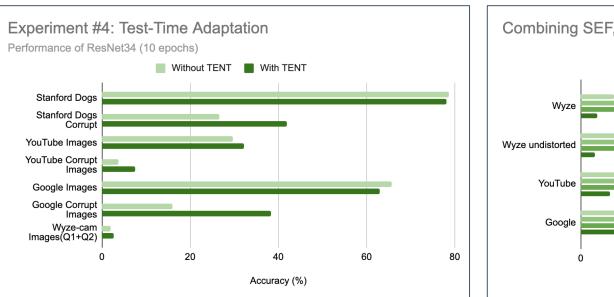


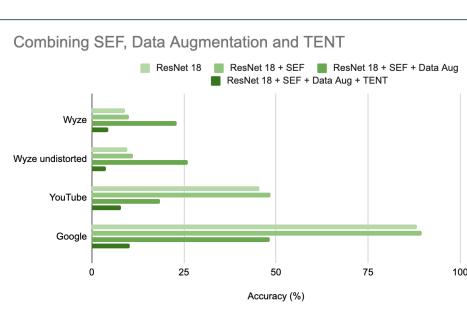
Fine-tuning on just 25 **breeds** improved performance

Google Images



Data augmentation significantly improved performance across majority of the models

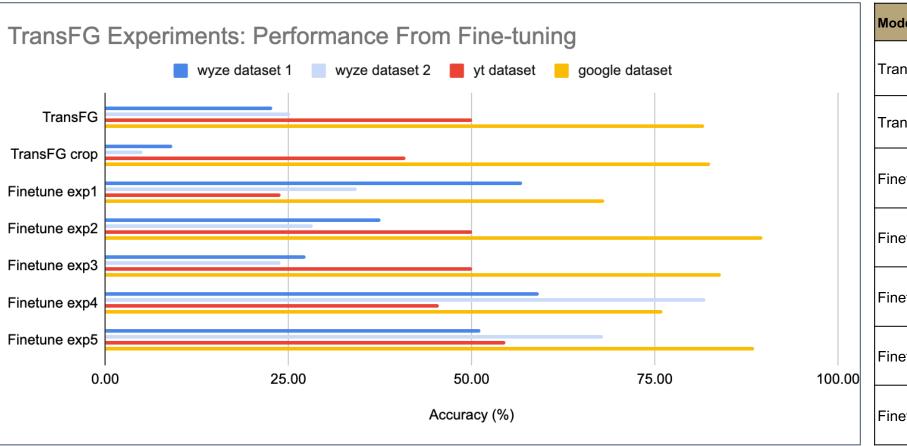




• **TENT** increased accuracy on corrupted images, but made negligible impact on Real-World data

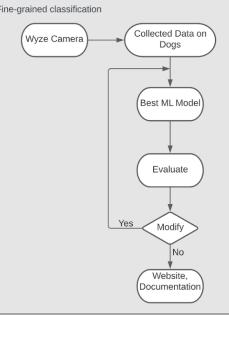
Phase 2: Fine-Grained Classification Experiment Results

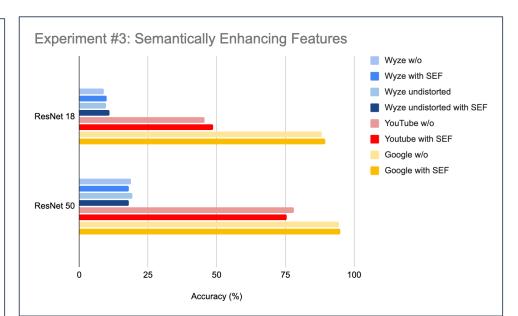
• Different settings for the TransFG model fine-tuning experiments are conducted



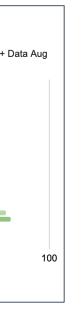
UW ADVISOR: ARKA MAJUMDAR **INDUSTRY ADVISORS:** ZHONGWEI CHENG, PRADEEP SINGH **SPONSORS:** WYZE LABS, INC

Classifying mixed breeds

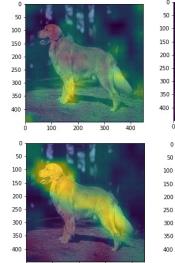


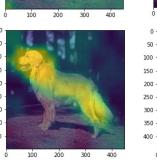


• **SEF** provided modest increase in performance while being versatile and computationally cheap

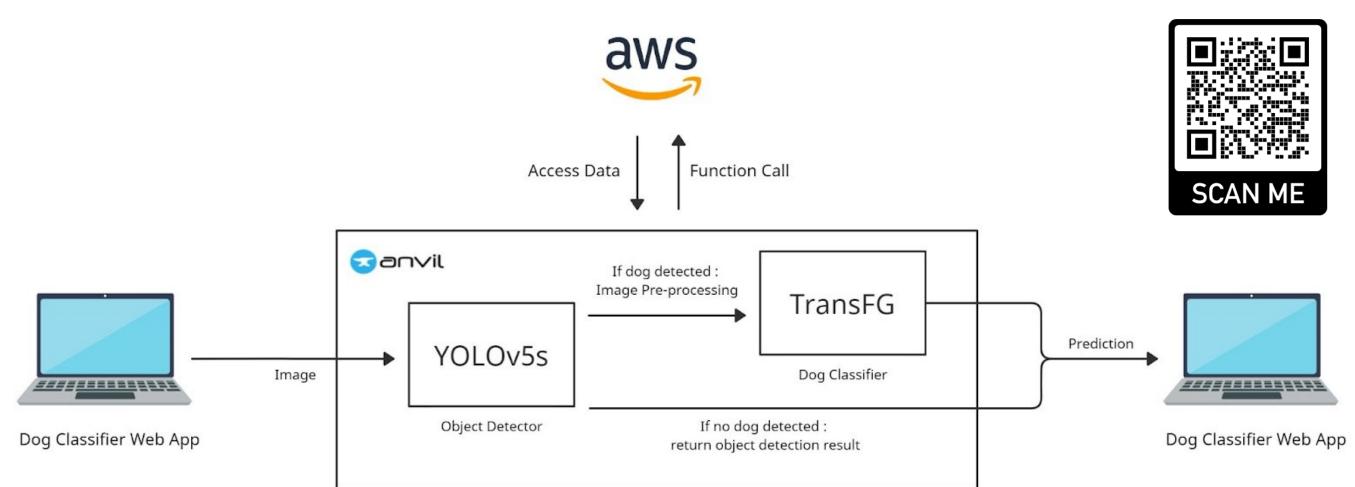


10-epoc 50-epoch



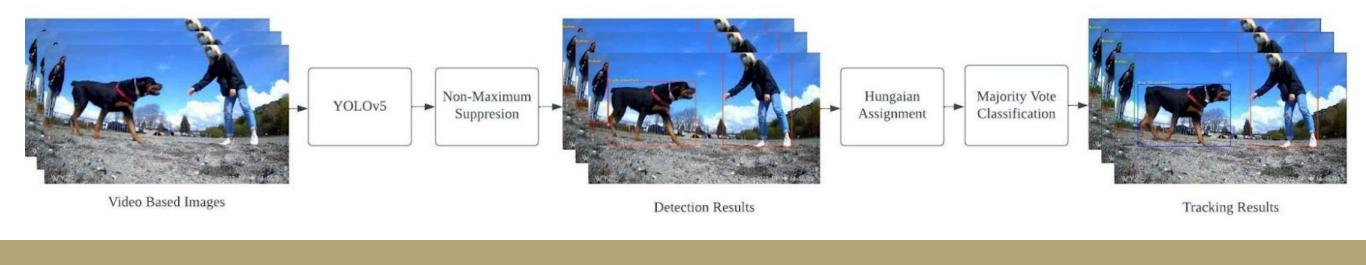


del	Pre-trained Dataset	Dataset	Epochs	Learning Rate
ansFG	ImageNet 21k	Stanford Dogs	10000	3.00E-02
ansFG crop	ImageNet 21k	Stanford Dogs Crop	10000	3.00E-02
etune exp1	ImageNet 21k, Stanford Dogs	Wyze Dataset V1	1000	3.00E-02
etune exp2	ImageNet 21k, Stanford Dogs	Wyze Dataset V2	100	3.00E-02
etune exp3	ImageNet 21k, Stanford Dogs	Wyze Dataset V2	100	3.00E-03
etune exp4	ImageNet 21k, Stanford Dogs	Wyze Dataset V2	1000	3.00E-02
ietune exp5	ImageNet 21k, Stanford Dogs	Wyze Dataset V2	1000	3.00E-03
			-	



Fine-Grained Object Tracker

- All data collected with Wyze Cam are video based from the real world
- every detection in the videos
- robustness of classifier



Conclusion and Future Work

Researched fine-grained image recognition methods, created custom datasets, and successfully implemented a full-stack web application that can detect and classify 120 kinds of dog species.

Future Work

- Explore real-time tracking for fine-grained object tracker
- Incorporate fine-grained recognition into Wyze Cam services

[1]	He, Ju, et al. "TransFG: A Transformer Architecture for F
[2]	He, Kaiming, et al. "Deep Residual Learning for Image F 770–778, 10.1109/cvpr.2016.90.
[3]	Huang, Gao, et al. "Densely Connected Convolutional N
[4]	Hu, Tao, et al. "See Better before Looking Closer: Weak 23 Mar. 2019, arxiv.org/abs/1901.09891.
[5]	Luo, Wei, et al. "Learning Semantically Enhanced Featu
[6]	Simonyan, Karen, and Andrew Zisserman. "Very Deep (
[7]	Sun, Guolei, et al. "Fine-Grained Recognition: Accountir Intelligence, vol. 34, no. 07, 3 Apr. 2020, pp. 12047–120
[8]	Tan, Mingxing, and Quoc V Le. "EfficientNet: Rethinking
[9]	Wei, Xiu-Shen, et al. "Deep Learning for Fine-Grained Ir

Technical Solution Architecture

Anvil Cloud Server

Image-based classifier performed poorly when evaluating complex images collected

Incorporated a simple tracking algorithm to conduct frame-by-frame association for

Majority vote classification is conducted after tracking to increase performance and

• Perform more experiments in fine-tuning to prevent overfitting and forgetting issues • Enable pipeline to conduct fine-grained object recognition in more categories

References

r Fine-Grained Recognition." ArXiv.org, 1 Dec. 2021.

e Recognition." 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016, pp.

Networks." 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017. akly Supervised Data Augmentation Network for Fine-Grained Visual Classification." ArXiv:1901.09891 [Cs],

ture for Fine-Grained Image Classification." ArXiv:2006.13457 [Cs], 26 Aug. 2020, arxiv.org/abs/2006.13457. Convolutional Networks for Large-Scale Image Recognition." ArXiv.org, 2014, arxiv.org/abs/1409.1556. ing for Subtle Differences between Similar Classes." Proceedings of the AAAI Conference on Artificial 054, arxiv.org/pdf/1912.06842v1.pdf, 10.1609/aaai.v34i07.6882. Accessed 27 Apr. 2022.

ng Model Scaling for Convolutional Neural Networks." ArXiv.org, 2019, arxiv.org/abs/1905.11946. Image Analysis: A Survey." ArXiv:1907.03069 [Cs], 5 July 2019, arxiv.org/abs/1907.03069.