Overview

Project Objective: Develop a model of a low-cost wireless sensor network for embedded monitoring on naval equipment and infrastructural components. Sensor types shall be of a small form factor, consisting of an accelerometer, pressure transducer, fluid flow, current, voltage, and temperature sensor.

Project Scope: RF communication, 200ft distance of up to 6 standard 4-20mA loop-based RTD sensors. Include sensor readings. Storage 32sec samples at bit rate of 1 Mbit/sec (10kHz @ 16bit x 6 channels).

Milestone:
- Establish Wireless Communication
- Support RF Communication up to 200 ft Distance
- Implement 6 Sensors & Calibration
- Data Validation & Store Data at 1 Mbit/sec
- Develop Event Trigger and Battery System
- Data Security

Hardware

- Processing Components:
 - NUCLEO-STM32WB55RG
 - Raspberry Pi 3B
 - Battery System:
 - 2 Cell Battery Management System (BMS) Module
 - 3.7V Li-ion Battery Gauge Module (ModelGauge)
 - Low Dropout Step-Down Linear Voltage Regulator Module
 - Sensor:
 - K-Type Surface Thermocouple
 - Hall Effect Flow Sensor
 - Voltage Divider Voltage Sensor
 - Hall Effect AC Current Clamp
 - Capacitance Pressure Sensor
 - NCD 3-axis Accelerometer + Wireless USB Modem
 - Piezoelectric Trigger System

Software

- STM32Cube Hardware Abstraction Layer
- OpenThread Border Router & Commissioner
- Raspberry Pi OS

Thread Protocol

Features

- STM32WB55 (End Child)
- Trigger System

Test Results & Conclusion

Sensors:
- Thermocouple, pressure transducer, voltage, and current can all work under required conditions with accuracy of ±1%.
- Accelerometer operates with the sampling rate of 5kHz.
- The calibrated sensor data undergoes processing via a high-performance, multi-channel 16-bit ADC with DMA functionality.

Network:
- Established a robust Thread network between the Raspberry Pi border router and STM32 end device for communication and connectivity.
- The end node instantaneously transmits data to the border router through UDP connection.

Trigger system:
- To optimize power efficiency, we incorporated a low power mode that leverages a wakeup piezo trigger system.

Power system:
- The Battery Management System (BMS) ensures the safety of the Li-ion battery as well as regulates the voltage through the Low Dropout (LDO) mechanism to power the MCU.
- Incorporates real-time monitoring with fuel gauge that directly linked to the battery to accurately track the battery percentage for enhanced usability and efficiency.

Future works

- Sensors: Implementation of a more accurate flow sensor.
- Battery: Consider implementing a double cell fuel gauge for more precise reading of battery level.
- Hardware Network: Adopt Aruba network system to create local, self-contained, and secure communication.
- Software Implementation:
 - Optimize data transfer methodology
 - Change communication protocol from UDP to CoAP or TCP
 - Improve data encryption method
 - Gain access and utilize STM32’s non-public documentation

Acknowledgments

- Faculty: Prof. Tai Chen
- Lab Resources:
 - UW Aeronautics and Astronautics Lab (Thijs Masmeijer)
 - UW Power Lab (Daniel Kirschen)
- Industry Experts: Luna Labs (Kevin Farinholt and David Alibakhshi)