
MAKING ELECTRIC VEHICLE
CHARGING FUN
STUDENTS: GERIN GEORGE, MOSKA JAMALI, RICO LI, BRENDAN OQUIST, KEVIN SHAO, DIANA VERDUZCO, BRYAN VO

ADVISERS: GAVARRAJU NANDURI, PARKER JONES, DAVID LANING, SHRUTI MISRA

SPONSORS: ENVORSO, FORD

• Design the VoltVision Smartphone App to monitor
and analyze data generated by electric vehicle(EV)
chargers, enabling accurate assessment of their
health conditions and performance.

The VoltVision App - Objectives

• Charging logs are generated after the end of a
charging event and stored in the Raspberry Pi’s
file system.

• Using the Raspberry Pi’s bluetooth connectivity,
we send the most recent log to a connected
phone via bluetooth, where our VoltVision app
is able to interact with it.

Hardware - Overview

UI/UX - App Development

• Look for cost-efficient alternatives
for Wireshark Box and Raspberry
Pi.

• Implement the latest cyber security
measures to secure user data.

• Gather more data for AC chargers
to improve accuracy.

Future Work, References, and Acknowledgments

Hardware - Data Collection and Bluetooth

• The VoltVision app is implemented using SwiftUI framework that displays BLE and
cloud based-data about the charger’s health.

• The design provides a user-friendly interface that makes for easy navigation through
crucial information.

• As a charger is connected, the app displays live charging updates and details,
including charging rate, voltage draw, and current draw.

• For chargers on the map, the user can view additional information about the charging
station, such as, hours of operation, address, compatible charger types, and usage
times.

Functionalities:
• Navigate map for charging stations
• Search for a charging station
• Real-time updates of status of

charging station

• Filter charging stations on map by
charger type

• Live charge updates

● Two machine learning models were developed. One is to identify the health conditions of
the EV chargers and the other one is to approximate the charging time.

● In both models, DC and AC specific models were trained, but ‘max_evse_power_kw’ and
‘max_evse_current_a’ are not populated for AC or Level 2 charging. The relatively bad
performance of AC models as shown in Table 1 below is caused by the lack of AC data.

● RandomForestClassifier() with the hyperparameter fine-tuning and L1-regularization is
used to identify the health conditions of the EV chargers [2]. The same procedure is used
to develop the model to approximate the charging time, but mean-squared error(MSE) is
used to evaluate the performance as it is a regression problem.

SOFTWARE - Cloud Computing

Software - Overview

• Azure Functions is used to run event-triggered
code without the need for explicit infrastructure
management. The azure.functions library is used
to interact with the Azure Functions runtime.

• The pyodbc Python library is used for database
interactions, connecting to a SQL Server database
and executing SQL queries.

• Machine learning models are incorporated into
the code, stored as pkl files. These models are
downloaded from Azure blob storage and loaded
into the program, where they are used to predict
charger status and charging time.

[1] S. Hymel, “Getting started with Asyncio in MicroPython
(Raspberry Pi Pico)” [Accessed: 21-May-2023].
[2] S. Ram, “Mastering random forests: A comprehensive guide,”
Medium, 18-Oct-2020. [Online]. [Accessed: 12-Mar-2023]
[3] "Configure Development Environment for pyodbc Python
Development," Microsoft, 17-Apr-2023. [Online]. [Accessed: 21-
May-2023].

Faculty: Payman Arabshahi, David Laning
Teaching Assistant: Shruti Misra
Industry Mentors: Jeffrey Hu, Parker Jones, Gavarraju Nanduri,
Bob Rapp, Adam Weber

• OBD2 is a standard diagnostic
system in modern vehicles, capable
of collecting various data such as
Vehicle Speed and Engine RPM.

• Wireshark Box uses the Wireshark
network protocol analyzer tool to
capture and analyze network traffic.

• The Raspberry Pi inside the AVFS
box gathers the data logs that are
generated from charging events
inside its folder structure.

• The Raspberry Pi in AVFS triggers data collection upon the “plug in” event. The
Wireshark Box produces ethernet packets, recorded by the RPi using
tcpdump.

• Bluetooth script using pyBleno and Asyncio [1] python packages is used to
create a stable bluetooth connection between the Raspberry Pi and the app.

• Using Bluetooth, we send the relevant information from the log data to the
app where it can be sent to our Azure server.

• Raspberry Pi is now also configured to automatically advertise as a BLE device
and run our Bluetooth script around 50 seconds after boot.

The implementation of the software system is composed of four stages,
• Import the raw data to Azure database.
• Perform backend computations on the cloud server.
• Identify EV chargers’ health conditions and approximate charging time.
• Export results to iOS App to display.

SOFTWARE - Machine Learning

Model 1 (health conditions of EV chargers) Model 2 (charging time approximation)

DC AC DC AC

Training Accuracy 0.964 0.826 N/A N/A

Testing Accuracy 0.955 0.833 N/A N/A

Training MSE (in minutes) N/A N/A 5.523 3.457

Testing MSE (in minutes) N/A N/A 9.802 0.667

Table 1. Training and Testing Statistics

• Data Processing and Prediction: The code processes
incoming data, makes predictions using the loaded
models, and adds these predictions to the data. The
data is then uploaded to the SQL database and
returned to the iOS app using an HTTP request.

• Develop features to enhance the convenience of charging an
EV for customers and display status of current chargers at a
charging station.

• Integrate a mapping feature, providing quick routing options
of nearby EV charging stations via Apple Maps.

• The Charge Angel AVFS Box is a hardware
system developed by Ford to collect the
charging data from the car.

• The Raspberry Pi included in the system is
being used to store the log data that is
generated during charging sessions.

