

JETRACER SOCCER LEAGUE LOCKHEED MARTIN /

JetRacer

STUDENTS: ANDREW KIM, ARA VARDANYAN, DYLAN IMAYAMA, ERIC LY, JACOB BAKHSHIAN, NICK KHORMAEI

Objectives

- Play 2v2 and 3v3 soccer using autonomous RC vehicles
- Utilize ML object detection to identify soccer ball, goal, ally, opponent, and boundaries
- Use reinforcement learning in a simulation environment to train agents to autonomously play soccer
- Develop hardware and software tools as part of an ongoing project that demonstrates artificial intelligence for STEM outreach

JetRacer Features

- Tamiya TT-02 RC car provides 1/10th scale chassis
- 4GB Jetson Nano board for ML computation
- CSI camera views surroundings with 136 degree FOV up to 60 fps
- Motor driver and multiplexer control steering and throttle
- 7V 3000mAh battery pack powers car
- All hardware mounted on custom 3D printed base plate

Field Design

- 30' x 20' x 1' (L x W x H) surrounding wall to contain ball and vehicles during match
- Transportable and modular setup using different lengths
- Sections connected via detachable hinges to allow stacking and easy connection/disconnection
- Cut-outs to slot in soccer goals
- Color selected to facilitate object detection

ELECTRICAL & COMPUTER ENGINEERING

UNIVERSITY of WASHINGTON

Basic JetRacer Motion

Jetson Nano • User-friendly script created to program JetRacer that accepts inputs of continuous values for steering angle and throttle

Object Detection

- Roboflow computer vision software used to create image dataset
 - ~6000 total images taken of ball, goals, cars,
- and boundaries to train object detection model • Nvidia's deep neural network, DetectNet, enables real time object detection
- Includes non-maximum suppression for filtering • Reduces computational cost by removing the data input layer, pooling layers, and output layer

Simulation Environment

- Multi-agent training simulation built in Unity game engine with Unity ml-agents library
- **Observation Space:**
- 9 observation rays coming out of the agents at equally spaced intervals
- Each observation ray detects the class and distance of the object in its view • Action Space:
- Steering angle to orient the vehicle at • Throttle to apply to the vehicle

Deterministic Model

• Integrated results from basic motion and object detection • JetRacer recognizes a target object and moves towards target until point of contact • Building block of JetRacer reacting to physical environment

MENTORS: DAKEN STARKENBURG, JAMES WALTNER, MATTHEW NGUYEN, PETE SULCS, JEFFREY HERRON **SPONSORS:** LOCKHEED MARTIN

- Based off of NVIDIA's Basic Motion notebook used to control throttle and steering of a
- Designed to simultaneously accept user inputs from RC controller and software inputs from

- and boundaries
- Implemented software to follow and strike a ball
- Developed logic process for striking a ball into a goal

- Training agents in simulation environment
- input into soccer playing model
- playing model
- scoring format

References, and Acknowledgments

https://github.com/NVIDIA-AI-IOT/jetracer https://github.com/bryanoliveira/soccer-twos-env

Result

Built and gained full range of motion of 4 JetRacers using software Set up a simulation environment to virtually train the agents Implemented object detection model that identifies soccer ball, goal, ally, opponent,

Created a GitHub page documenting the hardware and software instructions to setup JetRacers, a summary of the work completed, and plans for future work

Future Work

One to one matching of simulation and real environment

Middleware for processing object detection model data to proper form for

• Implementation of controls on rc cars based on the output from soccer

• Translate current deterministic model to include multiple cars and goal

[2]

Special thanks to Bryan Oliveira for talking us through his simulation environment

https://universe.roboflow.com/jetracer-soccer-league/jetracer-soccer-league/