Objectives

- Play 2v2 and 3v3 soccer using autonomous RC vehicles
- Utilize ML object detection to identify soccer ball, goal, ally, opponent, and boundaries
- Use reinforcement learning in a simulation environment to train agents to autonomously play soccer
- Develop hardware and software tools as part of an ongoing project that demonstrates artificial intelligence for STEM outreach

JetRacer Features

- Tamiya TT-02 RC car provides 1/10th scale chassis
- 4GB Jetson Nano board for ML computation
- CSI camera views surroundings with 136 degree FOV up to 60 fps
- Motor driver and multiplexer control steering and throttle
- 7V 3000mAh battery pack powers car
- All hardware mounted on custom 3D printed base plate

Basic JetRacer Motion

- Based off of NVIDIA’s Basic Motion notebook used to control throttle and steering of a JetRacer
- Designed to simultaneously accept user inputs from RC controller and software inputs from Jetson Nano
- User-friendly script created to program JetRacer that accepts inputs of continuous values for steering angle and throttle

Object Detection

- Roboflow computer vision software used to create image dataset
 - ~6000 total images taken of ball, goals, cars, and boundaries to train object detection model
 - NVIDIA’s deep neural network, DetectNet, enables real-time object detection
 - Includes non-maximum suppression for filtering
 - Reduces computational cost by removing the data input layer, pooling layers, and output layer

Simulation Environment

- Multi-agent training simulation built in Unity game engine with Unity ml-agents library
- Observation Space:
 - 9 observation rays coming out of the agents at equally spaced intervals
 - Each observation ray detects the class and distance of the object in its view
- Action Space:
 - Steering angle to orient the vehicle at
 - Throttle to apply to the vehicle

Deterministic Model

- Integrated results from basic motion and object detection
 - JetRacer recognizes a target object and moves towards target until point of contact
- Building block of JetRacer reacting to physical environment

Result

- Built and gained full range of motion of 4 JetRacers using software
- Set up a simulation environment to virtually train the agents
- Implemented object detection model that identifies soccer ball, goal, ally, opponent, and boundaries
- Implemented software to follow and strike a ball
- Developed logic process for striking a ball into a goal
- Created a GitHub page documenting the hardware and software instructions to setup JetRacers, a summary of the work completed, and plans for future work

Future Work

- One to one matching of simulation and real environment
- Training agents in simulation environment
- Middleware for processing object detection model data to proper form for input into soccer playing model
- Implementation of controls on RC cars based on the output from soccer playing model
- Translate current deterministic model to include multiple cars and goal scoring format

References, and Acknowledgments

https://github.com/NVIDIA
https://github.com/bryanoliveira/soccer
https://github.com/universe/robotflow/jetracer-soccer
https://github.com/bryanoliveira/soccer-twos-env
Special thanks to Bryan Oliveira for taking us through his simulation environment