
01
Navy Requirement Markup Language
STUDENTS: Jenna Flores, Ritik Shrivastava, Bao Van

ADVISORS: Haixun Wang, Kevin Murphy, TJ McKelvey

SPONSORS: NATIONAL SECURITY INNOVATION NETWORK (NSIN) / U.S. NAVY

• The NSIN is a network in the U.S. Department of Defense (DOD) aimed at

connecting DOD entities with academic and venture partners to innovate new

solutions for DOD-member challenges. Navy specifications and requirements

are typically presented in narrative form (e.g., paragraphs).

• The narrative requirements are hard to parse visually and nearly impossible

to parse using machines in any effective time frame.

• To solve this issue, we created an autonomous system that intakes PDF files

and outputs machine-readable JSON files utilizing a machine learning model

which can be converted to REQIF or XML for further usage

Introduction

• Develop and define a markup language to capture key characteristics of Navy

requirements

• Create a machine learning model to extract entities out of the document

paragraph to include in the markup language

• Develop a automated pipeline for processing requirements documents and

creating machine readable markup files at scale

• Demonstrate a prototype application of document processing

Objectives

ML Model

Future Work

Requirements

• Use Schema.org standard for markup language

• Identify and process hierarchical structure and their respective paragraph

numbers

• Identify and process PDF files containing requirements content

• Shall not store or share data to third party tools

• Adhere to the intellectual property rules and regulations

• ML model shall be able to process PDF files of up to 20 pages

• System shall process a PDF file within 10 minutes

Named Entity Recognition (NER)

● Considering unbalanced data for different classes, the F1 score is chosen as matric

● 0 being minimum and 1 being maximum, we achieve an excellent F1 score, i.e., more

than 0.8 for class ‘unit’ and ‘value’

● Class ‘Type’ has a low F1 score because it has the lowest distribution in our data and

will improve with more input data to train on

● Validation loss first decreases, then it increases while training loss keeps on

decreasing, so the model stops to prevent overfitting. With more training data or data

augmentation, validation loss may decrease more

Accuracy Matrix Training and Validation Loss Curve

• File Ingestion Subsystem: Extracting text

from PDF and creating text flies

• Reading the text and creating a nested

JSON

• Using the trained model to get the entities

and their types identified for the content

paragraph

• Adding the entity and its class to the

sentence and adding them to the JSON as

an element which is then given as output

and can be converted to REQIF or XML

Data labeling

System Design

High Level System Design

Data Preparation:

• Partition text for just the requirement section.

This is application specifically

• After extracting content from the input PDF

into a text file, we labeled the data on Azure

• BOI tagging was done for the classes ‘Value’,

‘Type’ and ‘Unit’

• Data was exported in CoNLL format and used

in machine learning pipeline

Data Provided:

• Multiple PDF files were provided were either

original or scans of requirement PDF

Input Document Nested Structure

• Named Entity Recognition is a subtask of

information extraction which identifies and

classifies entities in unstructured text into

categories

• Makes it easy to identify and classify values

and their unit/type pairs

• Optimized BERT base NER, a fine tuned BERT

model of Hugging Face to perform NER per

our use case

• Fine tuned the existing BERT Base NER using

our prepared data (Transfer Learning) to

make it domain specific

Azure Data Labeling

Results

● Left is sample pdf, and the right is the resultant JSON file

● We get the output JSON corresponding to input PDF with entities and classes of

content identified

• Further improving the ML Model to make it compatible with different format of

documents

• Scaling up intake file count

• Implement REQIF documentation

• Include option for XML output

Input Test Sample Output Test Sample

BERT CoNLL NER

	Slide 1

