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• NASA JPL plans to launch MicroRAD, a radiation detector that characterizes 
the radiation environment and detects energetic particles on a CubeSat in 
2024.

• Fluctuations or radiation interactions can cause MicroRAD to output 
inaccurate data. JPL seeks an autonomous machine learning solution to 
automate validation and recalibration.

Abstract 

• For this project to begin, the team had to source a sensor that had comparable 
specifications to MicroRAD, this included:

        •  Crystal scintillator   • Power supply   •  Bias supply   • Pre-amplifier 
        •  Sensor Interface   • Data acquisition hardware and software
• The group acquired equipment from the University of Washington to create data 

sets and optimize the machine learning model's performance on custom 
hardware, making it adaptable to various radiation sensors. 

• The deep learning model needs at least 10,000 readings from each source to be 
properly trained.

Pre-project Requirements 

Machine Learning - Implementation

Machine Learning – Calibration Pipeline
While(True):
      new_data = radiation_sensor(actual_calibration)
      processed_data = preprocess_data(new_data)
      predicted_calibration = nn_model(processed_data)
      error = actual_calibration - predicted_calibration
      error.backpropagation()
      model_parameters = model_parameters 
-           learning_rate*derivative_error

• The algorithm produced assesses data 
reliability and reproducibility, reducing 
manual intervention.

• Nominal Low Earth Orbit (LEO) 
characteristics calibrate the sensor and 
detect anomalies before reaching the 
ground team.

Plan of experimenting with neural network architectures
• Number of layers: 3, 5, 7, or 9 layers
• Number of neurons per layer: 16, 32, 64, or 128 neurons
• Activation functions: ReLU, sigmoid, or tanh
• Regularization techniques: L1/L2 regularization, dropout, or 

batch normalization
• Optimization algorithms: Adam, RMSprop
• Loss function: mean squared error (MSE), cross-entropy
• Other hyperparameters: number of epochs, learning rate, 

dropout rate, or batch size

Hardware For Data Collection

In order for our training algorithm to learn how to evaluate incoming gamma ray 
ions, we were required to collect in-house radiation data using different 
radiation sources.
The following image describes our data acquisition testbench that was used to 
record radiation data for Tc-99m, Na-22, Lu-176 and Cs-137.

To ensure that our Machine Learning algorithm is able to operate agnostically from the type 
of radiation sensor, we’ve constructed our own low-cost plastic scintillator similar to 
MicroRAD's.

Custom Scintillator Breakdown:

• EJ-276 Plastic scintillator
• Ej-510 Reflective Paint
• Medical Grade Ethanol - 95%
• Fine Grit Sandpaper
• Novus Polishing System
• Aluminum Foil
• Optical Coupling Grease
• Glass Coverslips
• Optical Epoxy

Using our original equipment with our new scintillator, our group was able to create a test 
set of true gamma and non-gamma ray data. This test set was then used to evaluate the 
accuracy of our model one again. These results will show that our model was capable of 
discerning gamma radiation data ranging from 140 KeV to ~1275 KeV.

Scintillator Hardware

Data collection equipment sourced from UW Radiation Imaging Lab:

• KETEK PEVAL-KIT-MCX evaluation kit
• PM3325-WB-B0 SiPM Silicon Photomultiplier wafer
• Agilent Technologies MSO9404A Oscilloscope

Using this equipment, our group was able to gather over 30,000 data points in the form of 
radiation pulses that were then pre-processed through our algorithm to extract the 
necessary information to classify the event as gamma or non-gamma.

Hardware For Data Collection (Continued)

Results and Future Work

Pre-processing

• Utilize the peak value of the 
histogram and documented energy 
emission levels of radiation sources 
to establish a linear relationship.

• Employ this linear relationship to 
predict whether a received 
radiation event corresponds to a 
known gamma radiation source.

• Collect reference data of Lu-176, Na-22, Tc-99m and Cs-137 sources.
• The raw data is converted from .bin extension to .csv extension.
• After format conversion, perform integral calculation on each pulse data. Organize 

the integrals into an order-based data. Find the histogram of the integrals.

• The input data collected from the lab environment and labeled for the neural network.
• After exploring, Once we received all of the data, we settled on building a normal feed forward 

neural network.
• Model fit different environment  
      parameters for calibration
• Compare the parameters of
      the radiation sensor and the 
      predicted parameters
• Train the neural network by
      the predicted and actual
      calibration parameters

Machine Learning Plan Overview

• The model performed with a training accuracy of 0.8 and a validation accuracy of 0.77. Also, the 
model has training losses of 0.54 and validation losses of 0.45. However, the model did not 
improve after 100+ epochs (iterations) showing that it was not able to make further connections 
or relationships amongst our data.

• To further the effectiveness of our model, larger batches of data (+10,000 waveforms) should be 
used to extract more physical characteristics unique to ionizing radiation to draw more 
conclusive characterization from the model.

• Physical characteristics that may prove valuable to assess are peak values, integrals, histogram 
plotting, etc. this information can be used by the model to draw better conclusions on true and 
false radiation readings.

• In the future, we can change our model to determine other forms of radiation such as alpha, 
beta, and etc. Also, we can experiment with different machine learning models, architectures, 
hyper parameters, and augment data to further increase accuracy and decrease computation 
time.
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