

# **Real-time Calibration of Quantum Gates**

# **STUDENTS:** ERFAN ABBASGHOLINEJAD, HAOQIN DENG, NINGZHI XIE

# **Trapped Ion System**

- Alternating electric fields create 2D potential and confine ions into 1D chain.
- Hyperfine level of Ion as two-level quantum system (qubit)
- State rotation driven by Raman transition via optical beams.
- Entanglement of two qubit via coupling internal states of ions to ion chain motional modes



## **Control Parameters**

- Optical beams for quantum state manipulation (quantum gate) is controlled by acoustic-optic modulator (AOM), where several control parameters can affect the fidelity of the quantum gates:
- steering location of control beams
- Amplitude modulation (gain) of the beams
- phase delay of the beams.
- These control parameters, can be carefully adjusted and optimized to compensate for the physical parameter drift in the trapped ion quantum computing system, maintaining high gate fidelity.





UNIVERSITY of WASHINGTON

**ADVISERS: JOHN GAMBLE, NATHAN KUTZ SPONSOR:** ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT, UNIVERSITY OF WASHINGTON



# **Extremum Seeking Control**

- EST is a feedback control strategy used to optimize a system's performance by iteratively searching for the extremum of a cost or objective function.
- Constant parameter perturbations • Maintain objective function L at high level.
- In our case, L is gate fidelity, x are control parameters.



- MS Gate Fidelity: • Fidelity measures how accurately a quantum gate performs.
- We define the objective function as the fidelity of the measured native gate from GST compared to the ideal native gate operation.

## • Gate Set Tomography (GST):

• GST aims to determine the fidelity of the three elements of the quantum system: state preparation, quantum gates, and quantum measurement, based on experimental results.



## SHRED method:

- Infer ground truth based on partial/probabilistic observations
- Reduce expensive cost incurred by full measurements
- Complement missing information from historical data trend
- Time-dependent data trajectory is learnt from historical data, by LSTM model





- Simulated 2 qubit XX gate real-time calibration against physical parameters drift 2 Iteration, 66 total gate set tomography measurement per calibration
- 5 calibration per hour in the overall time scale of 15h
- Suppress rotation axis error by 10 times , rotation angle error by 7 times, gate infidelity by 40 times, compared to the uncontrol case
- Robust under measurement noise in rabi rates and rotation axes at the same level of the deviations caused by physical parameters drift



# Future Work, References, and Acknowledgments

self-tuning mode-locked lasers. JOSA B, 35(3):617-626, 2018. gate between trapped-ion qubits. npj Quantum Information, 7(1):147, 2021 thesis, University of Maryland, 2016. [4] A. J. Goldschmidt, J. L. DuBois, S. L. Brunton, and J. N. Kutz. Model predictive control for robust quantum state preparation. Quantum, 6:837, 2022. [5] J. Gu, C. Feng, Z. Zhao, Z. Ying, R. T. Chen, and D. Z. Pan. Efficient on-chip learning for

the AAAI Conference on Artificial Intelligence, volume 35, pages 7583–7591, 2021. beam pattern of a reconfigurable holographic metamaterial antenna. JOSA A, 33(1):59-68, 2016. [7] M. Kang, Q. Liang, B. Zhang, S. Huang, Y. Wang, C. Fang, J. Kim, and K. R. Brown. Batch Review Applied, 16(2):024039, 2021.

tomography. Quantum, 5:557, 2021 icle physics, arXiv:1804.06913v3 [physics.ins-det] 28

## **Simulation Result**

- [1] T. Baumeister, S. L. Brunton, and J. N. Kutz. Deep learning and model predictive control for
- [2] R. Blümel, N. Grzesiak, N. Pisenti, K. Wright, and Y. Nam. Power-optimal, stabilized entangling
- [3] S. Debnath. A Programmable Five Qubit Quantum Computer Using Trapped Atomic Ions. PhD
- optical neural networks through power-aware sparse zeroth-order optimization. In Proceedings of
- [6] M. C. Johnson, S. L. Brunton, N. B. Kundtz, and N. J. Kutz. Extremum-seeking control of the
- optimization of frequency-modulated pulses for robust two-qubit gates in ion chains. Physical
- [8] E. Nielsen, J. K. Gamble, K. Rudinger, T. Scholten, K. Young, and R. Blume-Kohout. Gate set