Integrate Automatic Quantum
Oracle Synthesis Into QDK for

"~ Microsoft

Resource Estimation

Why do we care about Quantum?

Quantum computing is promising in reducing the computation time on

certain tasks:

e.g.,, factoring prime

numbers (cryptography

applications), searching in unstructured data (database), simulating
guantum systems (medicine development, new material discovery), or
even quantum machine learning (Quantum Al).

Challenges of Quantum Computing:

Several applications need a black-box function or a “Quantum Oracle”.
The realization of a quantum oracle needs to be carefully hand-
crafted for different situations. Thus, implementation of a quantum
oracle is often difficult and elusive. Further, the oracle needs to be
reconfigured for a change in data size, even with the same task. This
often hinders the scalability of quantum algorithms.

{H —~

0)5™ 4 14 Oracle | | Amplitude amplifications a
H —~

{H —~

=) flag 2

Fig.1 Example circuit of Grover’s search algorithm.

Solution we propose:

Automatic oracle synthesis - Given a classical description of

the function generate a quantum operation!?l,

Technical background and workflow:

Q#

Classical arithmetic

functions/representations
(Addition, multiplication, factoring, etc.)

QIR file

l Oracle generator

=, etc.) extraction

Function (+,

l Mockturtle

1. Logic network synthesisl3]
2. XAG-based optimization!'!

QIR file

}

Quantum logic gates synthesized
as a quantum-intermediate
representations (QIR) form

]]]] |]] r aa]]]] |] - |] |}]] | [§

Verilog

Low-Level Virtual Machine (LLVM)
compiler infrastructure is used to
build the Oracle generator. Specifically,
we read the operators from the
classically implemented function and
convert it to signals in logic networks.

1. Synthesize a logic network for
given operator based on
Mockturlte library in C++.[3]

2. Minimize the multiplicative
complexity of the logic network in a
XAG by reducing the number of
AND gates ']

LLVM

Classical logic
network

Automatically generated
Quantum executable

Output

|

Execute with
QIR-runner

Results:

We successfully implemented functionalities for arithmetic functions:

+,—,%,>,<,etc. Further, we successfully integrate the automatic
oracle generation with the Grover search algorithm.

Realization of classical arithmetic operators

Arithmetic
functions Types Ngates N qubit
A+ B 64-int 993 (CX)+126 (CCX) 319
(A+Bx)mod11 64-int 1360 (CX) + 188 (CCX) 445
Majority(A, B, C) Bool 10(CX) + 2 (CCX) 6

Grover’'s Search Algorithm Visualization

Grover's algorithm solves a search problem by finding an input x,
that satisfies the condition f(x,) = 1, where f(x) is a classical
function mapping n-bit search space to {0,1}.* It's quantum

algorithm provides a quadratic speedup, requiring approximately vN
evaluations compared to the classical approach that requires N
evaluations, where N = 2~

|good)

47\ Starting

‘ aII) state
0, |bad)

0 | |
0 _/}100 200
Noptimal |terati0n

0.5

Probability
of success

300

Applying Oy Applying —H®" O H®"

Fig. 2 Grover’s search algorithm visualizationl4,

Putting all together:

Case study: ISBN missing digit search using oracle generator
In the ISBN 10 system, each ISBN is a 10-digit sequence, and the last
digit serves as the check. The full sequence (xy,x4,...,x9) should

satisfy the following condition: (37_,(10 — i)x;) mod 11 = 0

[i] initial XAG from LLVM: 132 AND gates, 137 XOR gates
[i] optimized XAG: 132 AND gates, 138 XOR gates
Step 8: Running the gir-runner

START

METADATA EntryPoint

ISBN with missing digit: [@, 3, 0, 6, -1, 0, 6, 1, 5, 2]
Oracle validates: (9 + 6x) mod 11 =

Missing digit: 4

Full ISBnN: [@, 3, @, 6, 4, @, 6, 1, 5, 2]
he missing digit was found in 1 attempt.

Fig. 3 QIR-runner output with automatic oracle for Grover's search.

Future Work

After the successful implementation of the Grover's search algorithm
as shown above, we are exploring to implement other algorithms like
QFT (Quantum Fourier Transform) and QSVD (Quantum Singular
Value Decomposition) using the automatic oracle synthesis code we
have developed.

	Slide 1

