
Adiabatic algorithms are implemented as follows: 
1. Design a Hamiltonian where the ground state of the system 

encodes the solution to a trivial optimization problem
2. Prepare the known ground state of a simple Hamiltonian on a 

set of qubits
3. Adiabatically change the system to the desired Hamiltonian: 

    
                

4. The system remains in ground state the final Hamiltonian and 
that  will be the solution to the desired optimization problem

To study this problem, we can use a specific subclass of problems called gaussian 
free-fermion problems [2]. These models can be simulated scalably on classical 
computers.
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• Quantum adiabatic algorithms are of interest to quantum computing as an 
alternative to gate based quantum computing and are supposed to be more 
stable under errors , as method requires that qubits remain in their ground state 
the entire time[1].

• In this work we examine the error robustness of adiabatic quantum computing.

Motivation & Objective

SSH Model

More Results

• Theoretical analysis of our proposed 
error quantifying scheme to verify 
the computational results.

• Simulating non-gaussian models
• Characterize the errors in quantum 

adiabatic algorithms using  
non-gaussian models
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Results & Analysis: Error Scaling in Adiabatic Algorithms 

• Adiabatic errors depend on the number of qubits and the total adiabatic algorithm time
• Errors reduce as you increase the  number of qubits and the adiabatic algorithm time
• Error scaling with the number of qubits in adiabatic and is similar to that in non-adiabatic 

algorithms  

• Adiabatic and non-adiabatic errors in GS energies, for different values of n (number of 
qubits), with respect to T (the total adiabatic algorithm time).

• The cases with the phase transition (at J=1) in the evolution require a larger T to stabilize 
because at J=1 the band gap collapses, making the thermal states more accessible.

Methods: Quantifying Error 
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