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- Negatively charged nitrogen vacancy (NV-) centers in diamond (a) are a promising » To get familiar with GRAPE, we first attempted a R, rotation on a single qubit using - We used GRAPE on the NV Hamiltonian to perform a R, rotation on the electric qubit,
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+ NV-based spin registers can be used as qubits at room temperature and have been Spin-¥2 1°C nucleii, which occur with a natural of

abundance of 1.1% in diamond, can couple to ¢
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shown to have long coherence times. These properties make it a promising b e NV | . = dooledinol
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candidate for quantum computing. _ _
»  However, the complex system are difficult to control in realistic environments. nteractions. e 0.41
+  Multi-qubit registers often experience crosstalk errors while implementing gates, as * Though the existence of *C spins can be usetul 4
well as the full register decohering. for building a multi-qubit register, the s
+ These errors bring in the need for QOC to numerically optimize pulse sequences interaction terms can reduce the fidelity of NV° <
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« We chose to use a QUTIP package implementing GRAPE for this project obtained via nuclear spin spectroscopy (figure).
* In a closed quantum system, time evolution between states is described by a unitary
transformation. The time dependent Schrodinger equation can be written as shown
below where the Hamiltonian is split up into the drift and control terms and the u(t)
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