PHOTO-REALISTIC SYNTHETIC IMAGE GENERATION **STUDENTS:** Fengrui Cheng, Jiahuan He, Nithin Philip Joseph,

Objective

- A crucial challenge for computer vision applied to the retail industry is the Automatic Checkout (ACO) problem
- Main challenges: Seasonal, large-scale and fine-grained nature of the product categories as well as lack of large datasets
- We attempt to model a photorealistic image generation pipeline synthetic involving GANs, NeRFs and diffusion models to improve the Radius AI production classifier model, aiming for a higher accuracy

Synthetic Dataset

FEATURES:

- Seasonal Nature of Product and Data Annotation Efficiency: Seasonal nature of products and cumbersome process of data annotation can make dataset curation a challenging process
- Occlusion: Simulate occlusions and overlapping items, relevant to automatic checkout scenarios
- Realistic Environment: Generation of retail 🖁 📶 environment helps train models to recognize and understand products in their actual context, including shelving, store layout, and visual cues
- Baseline Dataset Features:
 - 1. 2000/500 train/valid split
- 2. **0.2 degree** of overlap between objects
- 3. Maximum of 15 objects per scene
- 4. Normalized YOLO annotations/image

Synthetic Data Generation

- **Pix2Pix GAN**: Enhances data variability and potentially improves accuracy
- **Inputs**: Utilize images and masks with the regular pix2pix architecture
- Mask Generation: Employ Sobel Edge Detector to generate masks, providing detailed information • Gaussian Blurring: Remove noise and extract main features through Gaussian blurring

ELECTRICAL & COMPUTER ENGINEERING

UNIVERSITY of WASHINGTON

ADVISORS: DANIEL KING, ANDREA FANELLI, JENQ-NENG HWANG **SPONSORS: RADIUS AI**

Fatwir SM, Tejoram Vivekanandan, Shikai Zhuang

Baseline Dataset

syn-GAN-DATASETv1

- Modified DCGANs: Learn underlying distribution of input data and generate realistic images
- **Generator**: Utilize U-Net architecture for better high-frequency features in generated images
- **Training Data**: Incorporate noise and mask for enhanced learning
- Varying Image Scales: Experimentation with (128,128) image scale yields sharper images

Object Level Classification [EfficientNetV2]

- Training Data: Utilize image masks, images, and the scene of the item image to generate synthetic input data
- Validation Data: Incorporate real item images as validation data
- Model Training: Employ EfficientNetv2 to classify different types of items and measure model accuracies • Image Padding Methods: Explore various padding methods and select the one that yields the highest model accuracy • Data Ratio Adjustment: Vary the ratio of original and generated data to test the model's classification accuracy • Result Analysis: Assess the impact of data ratios on the model's performance

EfficientNetV2 Process

EfficientNetV2

Background

Input Image

EfficientNetV2 Results

Proportion(original input : synthetic input)	original input	synthetic input	synthetic input(each class)	epochs	accuracy
10 : 0	2652	0	0	57	76.02%
9:1	2652	295	20	52	73.05%
8:2	2652	663	44	52	72.62%
7:3	2652	1137	76	45	71.77%
6 : 4	2652	1768	118	39	73.89%
5:5	2652	2652	177	37	75.49%
4 : 6	2652	3978	265	28	77.87%
3:7	2652	6188	413	12	74.47%
2:8	2652	10608	707	17	74.02%

Neural Radiance Fields

- **Photorealistic Novel Views**: Transforming 2D images into 3D representations and then back to 2D • Efficient Scene Learning: MLP (Multi-Layer Perceptron) overlearns scene details, optimizing storage and computation • Performance Evaluation: Testing achieved a PSNR of 25.94 dB, closely matching the original implementation

syn-GAN-DATASETv2

- and background

Input Image

Boundary Detection

QUANTITATIVE RESULTS

Dataset -> Model	No of Images	mAP-50	mAP-50-95
Baseline Dataset/Model	1000	0.831	0.718
Baseline Dataset/Model	2000	0.859	0.768
syn-GAN-DATASETv1	2000	0.857	0.749
syn-GAN-DATASETv2	4000	0.882	0.765

Accuracy

Baseline Results

Future Work, References, and Acknowledgments

- Discovered that object detection using greyscale images enhances the quality of deformable object detection
- advanced deep learning architectures and variants of GANs and NeRFs
- 2020
- learning experiences

Diffusion Models

• Eliminating Synthetic Boundaries: Overcoming the presence of artificial boundaries between objects

• Mask and Gradient-based Approach: Utilizing masks and gradient information to detect and inpaint boundaries

Boundary Inpainting

Diffusion generated

Results

Syn-GAN-DATASETv2 Results

• Explored GANs, NERFs, and Diffusion Models: Investigated various techniques, including pix2pix, DCGANs, and vanilla NERFs, for generating photorealistic synthetic images

• Future Improvements: Future scope could be to enhance the quality of generated images by exploring • NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Ben Mildenhall et. Al, ECCV

Acknowledgements: We express gratitude to TA Harsha, RadiusAI, and the ECE department for their invaluable insights, resources, and the opportunity to work on this remarkable project and gain valuable