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« Eliminating Synthetic Boundaries: Overcoming the presence of artificial boundaries between objects
and background
 Maskand Gradient-based Approach: Utilizing masks and gradient information to detect and inpaint boundaries

* A crucial challenge for computer vision
applied to the retail industry is the
Automatic Checkout (ACO) problem

* Main challenges: Seasonal, large-scale and | |

GANs/NeRFs/twFA

fine-grained nature of the product categories N
as well as lack of large datasets e N
 We attempt to model a photorealistic - =
synthetic image (generation pipeline I Baseline Dataset syn-GAN-DATASETv1
involving GANSs, NeRFs and diffusion models 3 |
- - - | !
to 'Mprove the Rgdl.us Al produs:tlon | « Modified DCGANSs: Learn underlying distribution of input data and generate realistic images
Classifier model, aiming for a higher « Generator: Utilize U-Net architecture for better high-frequency features in generated images
accuraCy . Training Data: Incorporate noise and mask for enhanced learning Input Image | I i
« Varying Image Scales: Experimentation with (128,128) image scale yields sharper images Boundary Detection y e J J
FEATURES: QUANTITATIVERESULTS QUALITATIVE RESULTS
« Seasonal Nature of Product and Data Annotation * Training Data: Utilize image masks, images, and the scene of the item image to generate synthetic input data
Efficiency: Seasonal nature of products and > * Validation Data: Incorporate real item images as validation data
cumbersome process of data annotation can make 2 J - peckaroundseenes * Model Training: Employ EfficientNetv2 to classify different types of items and measure model accuracies Dataset ->Model Noof | mAP-50 | mAP-50-95
dataset curation a challenging process 7 Tl A ' * Image Padding Methods: Explorevarious padding methodsand select the one that yields the highest model accuracy Images
s - Data Ratio Adjustment: Vary the ratio of original and generated data to test the model's classification accuracy Baseline Dataset/Model 1000 0.831 0.718 ""’“
‘ QCC|US|0n3 Simulate OC(}'US'OHS and ove!rlappmg o * Result Analysis: Assess the impact of data ratios on the model's performance Baseline Dataset/Model 2000 0.859 0768
items, relevant to automatic checkout scenarios o
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« Realistic Environment: Generation of retail # | EfficientNetV2 Process
environment helps train models to recognize and B ( | h syn-GAN-DATASETV2 4000 0.882 0.765
understand products in their actual context, Background l \ =<
including shelving, store layout, and visual cues _A 4 »| EfficientNetVv2 Accuracy
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1. 2000/500 train/valid split m i o N ety2 Resute Baseline Results Syn-GAN-DATASETvZResults
2. 0.2 degree of overlap between objects F1-Confidence Curve L F1-Confidence Curve
3 Maximum Of 15 Objects per scene EfficientNetV2 Classification 1.0 - fy . — zenify
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+ Pix2Pix GAN: Enhances data variability and potentially improves accuracy 100 91 82 Raﬁﬁongiﬁiismifm 46 37 28 — @l classes 0.77.2 0.686 Rl
* Inputs: Utilize images and masks with the regular pix2pix architecture | 0.2- 0.2
« Mask Generation: Employ Sobel Edge Detector to generate masks, providing detailed information
« Gaussian Blurring: Remove noise and extract main features through Gaussian blurring
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* Photorealistic Novel Views: Transforming 2D images into 3D representations and then back to 2D
« Efficient Scene Learning: MLP (Multi-Layer Perceptron) overlearns scene details, optimizing storage and computation
« Performance Evaluation: Testing achieved a PSNR of 25.94 dB, closely matching the original implementation
Original _ _ - _ _ _ _ - _
Image  Explored GANs, NERFs, and Diffusion Models: Investigated various techniques, including pix2pix,
i DCGANSs, and vanillaNERFs, for generating photorealistic synthetic images
Encoding | | [ [ [ ReLU « Discovered that object detection using greyscale images enhances the quality of deformable object
Ray Traversal ‘1T 1 R 1 B ) . detection
, ReLU ) ) ]
and Sampling - » Density Volumetric * Future Improvements: Future scope could be to enhance the quality of generated images by exploring
—— 338 33 > 33 o Rendering advanced deep learning architectures and variants of GANs and NeRFs
»RGB Color * NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Ben Mildenhall et. Al, ECCV
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